Applied Biochemistry and Biotechnology

, Volume 181, Issue 2, pp 593–603 | Cite as

Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse

  • Johanna Méndez Arias
  • Anelize de Oliveira Moraes
  • Luiz Felipe Amarante Modesto
  • Aline Machado de Castro
  • Nei Pereira Jr


Poly(ethylene glycol) (PEG 4000) and bovine serum albumin (BSA) were investigated with the purpose of evaluating their influence on enzymatic hydrolysis of sugarcane bagasse. Effects of these supplements were assayed for different enzymatic cocktails (Trichoderma harzianum and Penicillium funiculosum) that acted on lignocellulosic material submitted to different pretreatment methods with varying solid (25 and 100 g/L) and protein (7.5 and 20 mg/g cellulose) loadings. The highest levels of glucose release were achieved using partially delignified cellulignin as substrate, along with the T. harzianum cocktail: increases of 14 and 18 % for 25 g/L solid loadings and of 33 and 43 % for 100 g/L solid loadings were reached for BSA and PEG supplementation, respectively. Addition of these supplements could maintain hydrolysis yield even for higher solid loadings, but for higher enzymatic cocktail protein loadings, increases in glucose release were not observed. Results indicate that synergism might occur among these additives and cellulase and xylanases. The use of these supplements, besides depending on factors such as pretreatment method of sugarcane bagasse, enzymatic cocktails composition, and solid and protein loadings, may not always lead to positive effects on the hydrolysis of lignocellulosic material, making it necessary further statistical studies, according to process conditions.


Enzymatic hydrolysis Synergism Additives Cellulase Lignocellulosic biomass Biorefinery 



The authors would like to thank the Brazilian Petroleum Company (PETROBRAS) and Universidad de Costa Rica for scholarship and other financial supports.


  1. 1.
    Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., Sheehan, J., & Wyman, C. E. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169–172.CrossRefGoogle Scholar
  2. 2.
    Ye, Z., & Berson, R. E. (2014). Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes. Bioresource. Technol., 167, 582–586.CrossRefGoogle Scholar
  3. 3.
    Alvira, P., Negro, M. J., & Ballesteros, M. (2011). Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource. Technol., 102(6), 4552–4558.CrossRefGoogle Scholar
  4. 4.
    Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109(4), 1083–1087.CrossRefGoogle Scholar
  5. 5.
    Yang, M., Zhang, J., Kuittinen, S., Vepsäläinen, J., Soininen, P., Keinänen, M., & Pappinen, A. (2015). Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone–butanol–ethanol fermentation. Bioresource. Technol., 189, 131–137.CrossRefGoogle Scholar
  6. 6.
    Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource. Technol., 101(24), 9624–9630.CrossRefGoogle Scholar
  7. 7.
    Kumar, L., Arantes, V., Chandra, R., & Saddler, J. (2012). The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresource. Technol., 103(1), 201–208.CrossRefGoogle Scholar
  8. 8.
    Börjesson, J., Peterson, R., & Tjerneld, F. (2007). Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzyme. Microb Tech., 40(4), 754–762.CrossRefGoogle Scholar
  9. 9.
    Arantes, V., & Saddler, J. N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3, 1–11.CrossRefGoogle Scholar
  10. 10.
    Ravindran, R., & Jaiswal, A. K. (2016). A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresource. Technol., 199, 92–102.CrossRefGoogle Scholar
  11. 11.
    Monschein, M., Reisinger, C., & Nidetzky, B. (2014). Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw. Bioresource. Technol., 169, 713–722.CrossRefGoogle Scholar
  12. 12.
    Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme. Microb. Tech., 31(3), 353–364.CrossRefGoogle Scholar
  13. 13.
    Menegol, D., Scholl, A. L., Fontana, R. C., Dillon, A. J. P., & Camassola, M. (2014). Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energ. Convers. Manage., 88, 1252–1256.CrossRefGoogle Scholar
  14. 14.
    Wu, J., & Ju, L. K. (1998). Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnology Progress, 14(4), 649–652.CrossRefGoogle Scholar
  15. 15.
    Kumar, R., & Wyman, C. E. (2009). Effect of additives on the digestibility of corn Stover solids following pretreatment by leading technologies. Biotechnology and Bioengineering, 102(6), 1544–1557.CrossRefGoogle Scholar
  16. 16.
    Eckard, A. D., Muthukumarappan, K., & Gibbons, W. (2012). Pretreatment of extruded corn Stover with polyethylene glycol to enhance enzymatic hydrolysis: optimization, kinetics, and mechanism of action. Bioenergy Research, 5(2), 424–438.CrossRefGoogle Scholar
  17. 17.
    Li, K., Wang, X., Wang, J., & Zhang, J. (2015). Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo. Bioresource. Technol., 192, 424–431.CrossRefGoogle Scholar
  18. 18.
    Zhou, Y., Chen, H., Qi, F., Zhao, X., & Liu, D. (2015). Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose. Bioresource. Technol., 182, 136–143.CrossRefGoogle Scholar
  19. 19.
    Betancur, G. J., & Pereira Jr., N. (2010). Sugar cane bagasse as feedstock for second generation ethanol production: part I: diluted acid pretreatment optimization. Electronic Journal of Biotechnology, 13(3), 10–11.Google Scholar
  20. 20.
    Vásquez, M. P., da Silva, J. N. C., de Souza Jr, M. B., & Pereira Jr., N. (2007). Enzimatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation. Appl. Biochem. Biotech., 137, 141–154.Google Scholar
  21. 21.
    Barcelos, C. A., Maeda, R. N., Betancur, G. J. V., & Pereira Jr., N. (2013). The essentialness of delignification on enzymatic hydrolysis of sugar cane bagasse cellulignin for second generation ethanol production. Waste and Biomass Valorization, 4(2), 341–346.CrossRefGoogle Scholar
  22. 22.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617.Google Scholar
  23. 23.
    Mandels, M., & Weber, J. (1969). Production of cellulases. Advances in Chemistry Series, 95, 391–413.CrossRefGoogle Scholar
  24. 24.
    Maeda, R. N., da Silva, M. M. P., Santa Anna, L. M. M., & Pereira Jr., N. (2010). Nitrogen source optimization for cellulase production by Penicilliumfuniculosum, using a sequential experimental design methodology and the desirability function. Appl. Biochem Biotech, 161(1–8), 411–422.CrossRefGoogle Scholar
  25. 25.
    Rocha, V. A. L., Maeda, R. N., Santa Anna, L. M. M., & Pereira, N. (2013). Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Electronic Journal of Biotechnology, 16(5), 1–1.CrossRefGoogle Scholar
  26. 26.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  27. 27.
    Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  28. 28.
    Brethauer, S., Studer, M. H., Yang, B., & Wyman, C. E. (2011). The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. Bioresource. Technol., 102(10), 6295–6298.CrossRefGoogle Scholar
  29. 29.
    Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Adsorption of Trichoderma Reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 107(1), 65–72.CrossRefGoogle Scholar
  30. 30.
    Ooshima, H., Sakata, M., & Harano, Y. (1986). Enhancement of enzymatic hydrolysis of cellulose by surfactante. Biotechnology and Bioengineering, 28(11), 1727–1734.CrossRefGoogle Scholar
  31. 31.
    Sipos, B., Dienes, D., Schleicher, Á., Perazzini, R., Crestini, C., Siika-Aho, M., & Réczey, K. (2010). Hydrolysis efficiency and enzyme adsorption on steam-pretreated spruce in the presence of poly(ethylene glycol). Enzyme. Microb. Tech., 47(3), 84–90.CrossRefGoogle Scholar
  32. 32.
    Chia-wen, C. H., Cannella, D., Jørgensen, H., Felby, C., & Thygesen, L. G. (2015). Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnology for Biofuels, 8(1), 1–10.CrossRefGoogle Scholar
  33. 33.
    Saini, J. K., Patel, A. K., Adsul, M., & Singhania, R. R. (2016). Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew. Energ. doi: 10.1016/j.renene.2016.03.089.Google Scholar
  34. 34.
    Modenbach, A. A., & Nokes, S. E. (2012). The use of high-solids loadings in biomass pretreatment—a review. Biotechnology and Bioengineering, 109(6), 1430–1442.CrossRefGoogle Scholar
  35. 35.
    Lou, H., Wang, M., Lai, H., Lin, X., Zhou, M., Yang, D., & Qiu, X. (2013). Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresource. Technol., 146, 478–484.CrossRefGoogle Scholar
  36. 36.
    Li, Y., Ge, X., Sun, Z., & Zhang, J. (2015). Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw. Bioresource. Technol., 186, 316–320.CrossRefGoogle Scholar
  37. 37.
    Eckard, A. D., Muthukumarappan, K., & Gibbons, W. (2013). A review of the role of amphiphiles in biomass to ethanol conversion. Applied Sciences, 3(2), 396–419.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Johanna Méndez Arias
    • 1
  • Anelize de Oliveira Moraes
    • 2
  • Luiz Felipe Amarante Modesto
    • 1
  • Aline Machado de Castro
    • 3
  • Nei Pereira Jr
    • 1
  1. 1.Laboratories of Bioprocess Development, School of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratory of Biotechnology and Environment, School of EngineeringFluminense Federal UniversityRio de JaneiroBrazil
  3. 3.Biotechnology Department, Research and Development CenterPETROBRASRio de JaneiroBrazil

Personalised recommendations