Applied Biochemistry and Biotechnology

, Volume 181, Issue 1, pp 283–293 | Cite as

Antioxidant Activities of Peptoid-Grafted Chitosan Films

  • P-H. Elchinger
  • C. Delattre
  • S. Faure
  • O. Roy
  • S. Badel
  • T. Bernardi
  • P. Michaud
  • C. Taillefumier


The aim of this study was to investigate the possibility of immobilizing peptoid on chitosan film in order to generate new active material. Chitosan films have been grafted for the first time with short-length peptoid oligomers displaying antioxidant activities. The antioxidant activity of the selected peptoids was initially investigated with the DPPH assay and hydroxyl radical procedure. The metal chelating capacity of peptoids was also evaluated prior to their covalent attachment to chitosan. The benefit of chitosan functionalization with respect to its intrinsic antioxidant properties was finally evaluated in the present study. Interestingly, an increase of up to 90 % of the antioxidant activity of chitosan was observed.


Antioxidant Chitosan film Grafting Biosourced material Peptoid Polysaccharide 



This work received sponsorship by the French government under the “Investissements d'avenir” research program via the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the European Union under the EU Regional competitiveness and employment program 2007–2013 (ERDF-Auvergne region), and by the Auvergne region (CPER “axe Innovapole”).


  1. 1.
    Morales González, J.A. (2013). Oxidative stress and chronic degenerative diseases—a role for antioxidants, ed. J.A. Morales González, InTech, Croatia. pp. 1-485.Google Scholar
  2. 2.
    Di Bernardini, R., Harnedy, P., Bolton, D., Kerry, J., O’Neill, E., Mullen, A. M., & Hayes, M. (2011). Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem., 124, 1296–1307.CrossRefGoogle Scholar
  3. 3.
    Alvarez, I., Niemira, B. A., Fan, X., & Sommers, C. H. (2007). Inactivation of Salmonella enteritidis and Salmonella senftenberg in liquid whole egg using generally recognized as safe additives, ionizing radiation, and heat. J. Food Protect., 174, 1402–1409.CrossRefGoogle Scholar
  4. 4.
    Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids., 24, 770–775.CrossRefGoogle Scholar
  5. 5.
    Mati-Baouche, N., Elchinger, P. H., De Baynast, H., Pierre, G., Delattre, C., & Michaud, P. (2014). Chitosan as an adhesive. Eur. Polym. J., 60, 198–212.CrossRefGoogle Scholar
  6. 6.
    Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104, 6017–6084.CrossRefGoogle Scholar
  7. 7.
    Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Tech., 22, 292–303.CrossRefGoogle Scholar
  8. 8.
    Simon, R. J., Kania, R. S., Zuckermann, R. N., Huebner, V. D., Jewell, D. A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C. K., Spellmeyer, D. C., Tan, R., Frankel, A. D., Santi, D. V., Cohen, F. E., & Bartlett, P. A. (1992). Peptoids: a modular approach to drug discovery. Proc. Natl. Acad. Sci. U.S.A., 89, 9367–9371.CrossRefGoogle Scholar
  9. 9.
    Zuckermann, R. N. (2011). Peptoid origins. Biopolymers., 96, 545–555.CrossRefGoogle Scholar
  10. 10.
    Miller, S. M., Simon, R. J., Ng, S., Zuckermann, R. N., Kerr, J. M., & Moos, W. H. (1994). Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers. Bioorg. Med. Chem. Lett., 4, 2657–2662.CrossRefGoogle Scholar
  11. 11.
    Fowler, S. A., & Blackwell, H. E. (2009). Structure-function relationships in peptoids: Recent advances toward deciphering the structural requirements for biological function. Org. Biomol. Chem., 7, 1508–1524.CrossRefGoogle Scholar
  12. 12.
    Szekely, T., Caumes, C., Roy, O., Faure, S., & Taillefumier, C. (2013). α-Peptoïdes et composés apparentés: synthèse et contrôle de la conformation. C. R. Chimie., 16, 318–330.CrossRefGoogle Scholar
  13. 13.
    Yoo, B., & Kirshenbaum, K. (2008). Peptoid architectures: elaboration, actuation, and application. Curr. Opin. Chem. Biol., 12, 714–721.CrossRefGoogle Scholar
  14. 14.
    Gangloff, N., Ulbricht, J., Lorson, T., Schlaad, H., & Luxenhofer, R. (2016). Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem. Rev., 116, 1753–1802.CrossRefGoogle Scholar
  15. 15.
    Bailey, M. A., Ingram, M. J., & Naughton, D. P. (2004). A novel anti-oxidant and anti-cancer strategy: a peptoid anti-inflammatory drug conjugate with SOD mimic activity. Biochem. Biophys. Res. Commun., 317, 1155–1158.CrossRefGoogle Scholar
  16. 16.
    Fisher, A. E. O., Maxwell, S. C., & Naughton, D. P. (2003). Catalase and superoxide dismutase mimics for the treatment of inflammatory diseases. Inorg. Chem. Commun., 6, 1205–1208.CrossRefGoogle Scholar
  17. 17.
    Fisher, A. E. O., & Naughton, D. P. (2004). Metal ion chelating peptoids with potential as anti-oxidants: complexation studies with cupric ions. J. Inorg. Biochem., 98, 343–346.CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Li, L., Yu, C., & Hei, T. (2011). Chitosan-coated polystyrene microplate for covalent immobilization of enzyme. Anal. Bioanal. Chem., 401, 2311–2317.CrossRefGoogle Scholar
  19. 19.
    Hjelmgaard, T., Faure, S., Caumes, C., De Santis, E., Edwards, A. A., & Taillefumier, C. (2009). Convenient solution-phase synthesis and conformational studies of novel linear and cyclic α, β-alternating peptoids. Org. Lett., 11, 4100–4103.CrossRefGoogle Scholar
  20. 20.
    De Santis, E., Hjelmgaard, T., Caumes, C., Faure, S., Alexander, B. D., Holder, S. J., Siligardi, G., Taillefumier, C., & Edwards, A. A. (2012). Effect of capping groups at the N- and C-termini on the conformational preference of α, β-peptoids. Org. Biomol. Chem., 10, 1108–1122.CrossRefGoogle Scholar
  21. 21.
    Ho, M.-H., Wang, D.-M., Hsieh, H.-J., Liu, H.-C., Hsien, T.-Y., Lai, J.-Y., & Hou, L.-T. (2005). Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomat., 26, 3197–3206.CrossRefGoogle Scholar
  22. 22.
    Delattre, C., Pierre, G., Gardarin, C., Traikia, M., Elboutachfaiti, R., Isogai, A., & Michaud, P. (2015). Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohyd Polym., 116, 34–41.CrossRefGoogle Scholar
  23. 23.
    Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 315, 161–169.CrossRefGoogle Scholar
  24. 24.
    Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933–956.CrossRefGoogle Scholar
  25. 25.
    Maulucci, N., Izzo, I., Bifulco, G., Aliberti, A., De Cola, C., Comegna, D., Gaeta, C., Napolitano, A., Pizza, C., Tedesco, C., Flot, D., & De Riccardis, F. (2008). Synthesis, structures, and properties of nine-, twelve-, and eighteen-membered N-benzyloxyethyl cyclic α-peptoids. Chem. Commun., 33, 3927–3929.CrossRefGoogle Scholar
  26. 26.
    De Cola, C., Licen, S., Comegna, D., Cafaro, E., Bifulco, G., Izzo, I., Tecilla, P., & De Riccardis, F. (2009). Size-dependent cation transport by cyclic alpha-peptoid ion carriers. Org. Biomol. Chem., 7, 2851–2854.CrossRefGoogle Scholar
  27. 27.
    De Cola, C., Fiorillo, G., Meli, A., Aime, S., Gianolio, E., Izzo, I., & De Riccardis, F. (2014). Gadolinium-binding cyclic hexapeptoids: synthesis and relaxometric properties. Org. Biomol. Chem., 12, 424–431.CrossRefGoogle Scholar
  28. 28.
    Friedman, M., & Juneja, V. K. (2010). Review of antimicrobial and antioxidative activities of chitosans in food. J. Food Prot., 73, 1737–1761.CrossRefGoogle Scholar
  29. 29.
    Khare, A. K., Biswas, A. K., & Sahoo, J. (2014). Comparison study of chitosan, EDTA, eugenol and peppermint oil for antioxidant and antimicrobial potentials in chicken noodles and their effect on colour and oxidative stability at ambient temperature storage. LWT - Food Sci Technol., 55, 286–293.CrossRefGoogle Scholar
  30. 30.
    Liu, J., Wen, X.-Y., Lu, J.-F., Kan, J., & Jin, C.-H. (2014). Free radical mediated grafting of chitosan with caffeic and ferulic acids: Structures and antioxidant activity. Int. J. Biol. Macromol., 65, 97–106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P-H. Elchinger
    • 1
    • 2
    • 3
    • 4
  • C. Delattre
    • 3
    • 4
  • S. Faure
    • 1
    • 2
  • O. Roy
    • 1
    • 2
  • S. Badel
    • 5
  • T. Bernardi
    • 5
  • P. Michaud
    • 3
    • 4
  • C. Taillefumier
    • 1
    • 2
  1. 1.Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-FerrandClermont-FerrandFrance
  2. 2.CNRS, UMR 6296ICCFAubière CedexFrance
  3. 3.Université Clermont Auvergne, Université Blaise Pascal, Institut PascalClermont-FerrandFrance
  4. 4.CNRS, UMR 6602, Institut PascalAubièreFrance
  5. 5.BioFilm Control, rue Emile Duclaux, Biopôle Clermont LimagneSaint-BeauzireFrance

Personalised recommendations