Applied Biochemistry and Biotechnology

, Volume 181, Issue 1, pp 32–47 | Cite as

Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets

  • Lijuan Su
  • Lele Yang
  • Shi Huang
  • Yan Li
  • Xiaoquan Su
  • Fengqin Wang
  • Cunpei Bo
  • En Tao WangEmail author
  • Andong SongEmail author


Termites are well recognized for their thriving on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling microbiota; however, the effects of diet changes on termite gut microbiota are poorly understood, especially for the lower termites. In this study, we employed high-throughput 454 pyrosequencing of 16S V1–V3 amplicons to compare gut microbiotas of Tsaitermes ampliceps fed with lignin-rich and lignin-poor cellulose diets after a 2-week-feeding period. As a result, the majority of bacterial taxa were shared across the treatments with different diets, but their relative abundances were modified. In particular, the relative abundance was reduced for Spirochaetes and it was increased for Proteobacteria and Bacteroides by feeding the lignin-poor diet. The evenness of gut microbiota exhibited a significant difference in response to the diet type (filter paper diets < corn stover diets < wood diets), while their richness was constant, which may be related to the lower recalcitrance of this biomass to degradation. These results have important implications for sampling and analysis strategies to probe the lignocellulose degradation features of termite gut microbiota and suggest that the dietary lignocellulose composition could cause shifting rapidly in the termite gut microbiota.


Tsaitermes ampliceps Gut symbionts Lignocellulose degradation Corn stover Filter paper 454 Pyrosequencing 



This research was supported by National Science Foundation of China Grant 31170350.

Compliance with Ethical Standards

Conflict of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in the manuscript entitled, “Variation in the gut microbiota and sensitivity to dietary changes in termite hosts”.

Supplementary material

12010_2016_2197_MOESM1_ESM.docx (156 kb)
Supplementary Fig. S1 (DOCX 156 kb)
12010_2016_2197_MOESM2_ESM.docx (29 kb)
Supplementary Table S1 (DOCX 29 kb)
12010_2016_2197_MOESM3_ESM.docx (69 kb)
Supplementary Table S2 (DOCX 68 kb)


  1. 1.
    Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22, 394–400.CrossRefGoogle Scholar
  2. 2.
    McDonald, J. E., Rooks, D. J., & McCarthy, A. J. (2012). Methods for the isolation of cellulose-degrading microorganisms. Methods in Enzymology, 510, 349–374.CrossRefGoogle Scholar
  3. 3.
    Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12, 168–180.CrossRefGoogle Scholar
  4. 4.
    Scharf, M. E. (2015). Omic research in termites: an overview and a roadmap. Frontiers in Genetics, 6, 76.CrossRefGoogle Scholar
  5. 5.
    Fraune, S., & Bosch, T. C. G. (2010). Why bacteria matter in animal development and evolution. BioEssays, 32, 571–580.CrossRefGoogle Scholar
  6. 6.
    Scharf, M. E. (2015). Termites as targets and models for biotechnology. Annual Review of Entomology, 60, 77–102.CrossRefGoogle Scholar
  7. 7.
    Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N. C., Matson, E. G., Ottesen, E. A., Zhang, X., Hernández, M., Murillo, C., Acosta, L. G., Rigoutsos, I., Tamayo, G., Green, B. D., Chang, C., Rubin, E. M., Mathur, E. J., Robertson, D. E., Hugenholtz, P., & Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450, 560–565.CrossRefGoogle Scholar
  8. 8.
    Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6, 740–751.CrossRefGoogle Scholar
  9. 9.
    Benjamino, J., & Graf, J. (2016). Characterization of the core and caste-specific microbiota in the termite, Reticulitermes flavipes. Frontiers in Microbiology, 7, 171.CrossRefGoogle Scholar
  10. 10.
    Ohkuma, M., Sato, T., Noda, S., Ui, S., Kudo, T., & Hongoh, Y. (2007). The candidate phylum ‘termite group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiology Ecology, 60, 467–476.CrossRefGoogle Scholar
  11. 11.
    Brugerolle, G., & Radek, R. (2006). Symbiotic protozoa of termites. In H. König & A. Varma (Eds.), Intestinal microorganisms of soil invertebrates. Soil biology. Vol. 6 (pp. 243–269). Berlin: Springer.CrossRefGoogle Scholar
  12. 12.
    Berlanga, M., Pasteur, B. J., Grandcolas, P., & Guerrero, R. (2011). Comparison of the gut microbiota from soldier and worker castes of the termite Reticulitermes grassei. International Microbiology, 14, 83–93.Google Scholar
  13. 13.
    Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PloS One, 6, e21709.CrossRefGoogle Scholar
  14. 14.
    Scharf, M. E., Karl, Z. J., Sethi, A., Sen, R., Raychoudhury, R., & Boucias, D. G. (2011). Defining host-symbiont collaboration in termite lignocellulose digestion, “the view from the tip of the iceberg. Communicative & Integrative Biology, 4, 761–763.CrossRefGoogle Scholar
  15. 15.
    Sinma, K., Khucharoenphaisan, K., Kitpreechavanich, V., & Tokuyama, S. (2011). Purification and characterization of a thermostable xylanase from Saccharopolyspora pathumthaniensis S582 isolated from the gut of a termite. Bioscience, Biotechnology, and Biochemistry, 75, 1957–1963.CrossRefGoogle Scholar
  16. 16.
    Hongoh, Y. (2010). Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience, Biotechnology, and Biochemistry, 74, 1145–1151.CrossRefGoogle Scholar
  17. 17.
    Tai, V., James, E. R., Nalepa, C. A., Scheffrahn, R. H., Perlman, S. J., & Keeling, P. J. (2015). The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Applied and Environmental Microbiology, 81, 1059–1070.CrossRefGoogle Scholar
  18. 18.
    Abdul Rahman, N., Parks, D. H., Willner, D. L., Engelbrektson, A. L., Goffredi, S. K., Warnecke, F., Scheffrahn, R. H., & Hugenholtz, P. (2015). A molecular survey of Australian and north American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiologica, 3, 5.Google Scholar
  19. 19.
    Karl, Z. J., & Scharf, M. E. (2015). Effects of five diverse lignocellulosic diets on digestive enzyme biochemistry in the termite Reticulitermes flavipes. Archives of Insect Biochemistry and Physiology, 90, 89–103.CrossRefGoogle Scholar
  20. 20.
    Huang, X. F., Bakker, M. G., Judd, T. M., Reardon, K. F., & Vivanco, J. M. (2013). Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microbial Ecology, 65, 531–536.CrossRefGoogle Scholar
  21. 21.
    Boucias, D. G., Cai, Y., Sun, Y., Lietze, V. U., Sen, R., Raychoudhury, R., & Scharf, M. E. (2013). The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Molecular Ecology, 22, 1836–1853.CrossRefGoogle Scholar
  22. 22.
    Raychoudhury, R., Sen, R., Cai, Y., Sun, Y., Lietze, V. U., Boucias, D. G., & Scharf, M. E. (2013). Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Insect Molecular Biology, 22, 155–171.CrossRefGoogle Scholar
  23. 23.
    Brauman, A., Doré, J., Eggleton, P., Bignell, D., Breznak, J. A., & Kane, M. D. (2001). Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiology Ecology, 35, 27–36.CrossRefGoogle Scholar
  24. 24.
    Mikaelyan, A., Dietrich, C., Köhler, T., Poulsen, M., Sillam-Dussès, D., & Brune, A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 24, 5284–5295.CrossRefGoogle Scholar
  25. 25.
    Huang, F. S., Zhu, S. M., Ping, Z. M., He, X. S., & Li, G. X. (2000). Fauna Sinica Insecta, vol. 17 Isoptera (pp. 430–865). Beijing: Science Press.Google Scholar
  26. 26.
    Su, L. J., Liu, Y. Q., Liu, H., Wang, Y., Li, Y., Lin, H. M., Wang, F. Q., & Song, A. D. (2015). Linking lignocellulosic dietary patterns with gut microbial Enterotypes of Tsaitermes ampliceps and comparison with Mironasutitermes shangchengensis. Genetics and Molecular Research, 14, 13954–13967.CrossRefGoogle Scholar
  27. 27.
    Liu, N., Yan, X., Zhang, M., Xie, L., Wang, Q., Huang, Y., Zhou, X., Wang, S., & Zhou, Z. (2011). Microbiome of fungus-growing termites: a new res ervoir for lignocellulase genes. Applied and Environmental Microbiology, 77, 48–56.CrossRefGoogle Scholar
  28. 28.
    Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PloS One, 6, e27310.CrossRefGoogle Scholar
  29. 29.
    Schloss, P. D., Westcott, S. L., Ryabin, T., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.CrossRefGoogle Scholar
  30. 30.
    Kunin, V., Engelbrektson, A., Ochman, H., & Hugenholtz, P. (2010). Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118–123.CrossRefGoogle Scholar
  31. 31.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. U. (2011). CHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.CrossRefGoogle Scholar
  32. 32.
    Kuhnigk, T., & König, H. (1997). Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. Journal of Basic Microbiology, 37, 205–211.CrossRefGoogle Scholar
  33. 33.
    Aickin, M., & Gensler, H. (1996). Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. American Journal of Public Health, 86, 726–728.CrossRefGoogle Scholar
  34. 34.
    Berchtold, M., Chatzinotas, A., Schönhuber, W., Brune, A., Amann, R., Hahn, D., & König, H. (1999). Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Archives of Microbiology, 172, 407–416.CrossRefGoogle Scholar
  35. 35.
    Ni, J., & Tokuda, G. (2013). Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 31, 838–850.CrossRefGoogle Scholar
  36. 36.
    Brune, A. (2006). Symbiotic associations between termites and prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes, vol. 1. Symbiotic associations, biotechnology, applied microbiology (pp. 439–474). New York: Springer.Google Scholar
  37. 37.
    He, S., Ivanova, N., Kirton, E., Allgaier, M., Bergin, C., Scheffrahn, R. H., Kyrpides, N. C., Warnecke, F., Tringe, S. G., & Hugenholtz, P. ((2013)). Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PloS One, 8, e61126.CrossRefGoogle Scholar
  38. 38.
    Dietrich, C., Köhler, T., & Brune, A. (2014). The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology, 80, 2261–2269.CrossRefGoogle Scholar
  39. 39.
    Dröge, S., Fröhlich, J., Radek, R., & König, H. (2006). Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Applied and Environmental Microbiology, 72, 392–397.CrossRefGoogle Scholar
  40. 40.
    Hongoh, Y., Sharma, V. K., Prakash, T., Noda, S., Toh, H., Taylor, T. D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., & Ohkuma, M. (2008). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science, 322, 1108–1109.CrossRefGoogle Scholar
  41. 41.
    Yang, Y. J., Zhang, N., Ji, S. Q., Lan, X., Zhang, K. D., Shen, Y. L., Li, F. L., & Ni, J. F. (2014). Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. International Journal of Systematic and Evolutionary Microbiology, 64, 2956–2961.CrossRefGoogle Scholar
  42. 42.
    Pramono, A. K., Sakamoto, M., Iino, T., Hongoh, Y., & Ohkuma, M. (2015). Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. International Journal of Systematic and Evolutionary Microbiology, 65, 681–685.CrossRefGoogle Scholar
  43. 43.
    Pinheiro, G. L., Correa, R. F., Cunha, R. S., Cardoso, A. M., Chaia, C., Clementino, M. M., Garcia, E. S., de Souza, W., & Frasés, S. (2015). Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica. Frontiers in Microbiology, 6, 860.CrossRefGoogle Scholar
  44. 44.
    Hongoh, Y., Sato, T., Dolan, M. F., Noda, S., Ui, S., Kudo, T., & Ohkuma, M. (2007). The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Applied and Environmental Microbiology, 73, 6270–6276.CrossRefGoogle Scholar
  45. 45.
    Wasi, S., Tabrez, S., & Ahmad, M. (2013). Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environmental Monitoring and Assessment, 185, 8147–8155.CrossRefGoogle Scholar
  46. 46.
    Jiménez, D. J., Korenblum, E., & van Elsas, J. D. (2014). Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Applied Microbiology and Biotechnology, 98, 2789–2803.CrossRefGoogle Scholar
  47. 47.
    Kannisto, M. S., Mangayil, R. K., Shrivastava-Bhattacharya, A., Pletschke, B. I., Karp, M. T., & Santala, V. P. (2015). Metabolic engineering of Acinetobacter Baylyi ADP1 for removal of clostridium butyricum growth inhibitors produced from lignocellulosic hydrolysates. Biotechnology for Biofuels, 8, 198.CrossRefGoogle Scholar
  48. 48.
    Oosterkamp, M. J., Méndez-García, C., Kim, C.-H., Bauer, S., Ibáñez, A. B., Zimmerman, S., Hong, P.-Y., Cann, I. K., & Mackie, R. I. (2016). Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system. Biotechnology for Biofuels, 9, 120.CrossRefGoogle Scholar
  49. 49.
    He, Y., Ding, Y., & Long, Y. (1991). Two cellulolytic clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. International Journal of Systematic Bacteriology, 41, 306–309.CrossRefGoogle Scholar
  50. 50.
    Huang, X. F., Santhanam, N., Badri, D. V., Hunter, W. J., Manter, D. K., Decker, S. R., Vivanco, J. M., & Reardon, K. F. (2013). Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnology and Bioengineering, 110, 1616–1626.CrossRefGoogle Scholar
  51. 51.
    Geib, S. M., Filley, T. R., Hatcher, P. G., et al. (2008). Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences of the United States of America, 105, 12932–12937.CrossRefGoogle Scholar
  52. 52.
    Chaffron, S., & von Mering, C. (2007). Termites in the woodwork. Genome Biology, 8, 229.CrossRefGoogle Scholar
  53. 53.
    Wei, H., Xu, Q., Taylor, L. E., Baker, J. O., Tucker, M. P., & Ding, S. Y. (2009). Natural paradigms of plant cell wall degradation. Current Opinion in Biotechnology, 20, 330–338.CrossRefGoogle Scholar
  54. 54.
    Vikman, M., Karjomaa, S., Kapanen, A., Wallenius, K., & Itavaara, M. (2002). The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions. Applied Microbiology and Biotechnology, 59, 591–598.CrossRefGoogle Scholar
  55. 55.
    Reichling, J. (2010). Plant–microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. In M. Wink (Ed.), Annual plant reviews volume 39: functions and biotechnology of plant secondary metabolites (pp. 214–347). Oxford: Wiley.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lijuan Su
    • 1
  • Lele Yang
    • 1
  • Shi Huang
    • 2
  • Yan Li
    • 1
  • Xiaoquan Su
    • 2
  • Fengqin Wang
    • 1
    • 3
  • Cunpei Bo
    • 2
  • En Tao Wang
    • 4
    Email author
  • Andong Song
    • 1
    • 3
    • 5
    Email author
  1. 1.College of Life SciencesHenan Agricultural UniversityZhengzhouChina
  2. 2.BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  3. 3.Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of AgricultureZhengzhouChina
  4. 4.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxico D.F.Mexico
  5. 5.ZhengzhouChina

Personalised recommendations