Applied Biochemistry and Biotechnology

, Volume 180, Issue 8, pp 1574–1585 | Cite as

Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce d(−)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens

  • Anelize de Oliveira Moraes
  • Ninoska Isabel Bojorge Ramirez
  • Nei PereiraJrEmail author


Lactic acid is widely used in chemical, pharmaceutical, cosmetic, and food industries, besides it is the building block to produce polylactic acid, which is a sustainable alternative biopolymer to synthetic plastic due to its biodegradability. Aiming at producing an optically pure isomer, the present work evaluated the potential of pulp mill residue as feedstock to produce d(−)-lactic acid by a strain of the bacterium Lactobacillus coryniformis subsp. torquens using separate hydrolysis and fermentation process. Enzymatic hydrolysis, optimized through response surface methodology for 1 g:4 mL solid/liquid ratio and 24.8 FPU/gcellulose enzyme loading, resulted in 140 g L−1 total reducing sugar and 110 g L−1 glucose after 48 h, leading to 61 % of efficiency. In instrumented bioreactor, 57 g L−1 of d(−)-lactic acid was achieved in 20 h of fermentation, while only 0.5 g L−1 of l(+)-lactic acid was generated. Furthermore, product yield of 0.97 g/g and volumetric productivity of 2.8 g L−1 h−1 were obtained.


Pulp mill residue Separate hydrolysis and fermentation Enzymatic hydrolysis d(−)-lactic acid Lactobacillus coryniformis subsp. torquens 



The authors would like to thank the colleagues of LADEBIO/EQ/UFRJ for all technical support during the experiments and the AGIR/UFF for PIBITI scholarship.


  1. 1.
    Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & Oliveira, R. P. S. (2013). Lactic acid properties, applications and production: a review. Trends in Food Science and Technology, 30, 70–83.CrossRefGoogle Scholar
  2. 2.
    Oshiro, M., Shinto, H., Tashiro, Y., Miwa, N., Sekiguchi, T., Okamoto, M., & Sonomoto, K. (2009). Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 108, 376–384. doi: 10.1016/j.jbiosc.2009.05.003.CrossRefGoogle Scholar
  3. 3.
    Adnan, A. F. M., & Tan, I. K. P. (2007). Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential. Bioresource Technology, 98, 1380–1385. doi: 10.1016/j.biortech.2006.05.034.CrossRefGoogle Scholar
  4. 4.
    Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286–301. doi: 10.1016/j.jbiotec.2011.06.017.CrossRefGoogle Scholar
  5. 5.
    Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69, 627–642. doi: 10.1007/s00253-005-0229-x.CrossRefGoogle Scholar
  6. 6.
    Hofvendahl, K., & Hahn–Hagerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26, 87–107.CrossRefGoogle Scholar
  7. 7.
    Li, Y., & Cui, F. (2010). Microbial lactic acid production from renewable resources. In O. V. Singh & S. P. Harvey (Eds.), Sustainable biotechnology: sources of renewable energy (pp. 211–228). Dordrecht: Springer. doi: 10.1007/978-90-481-3295-9_11.CrossRefGoogle Scholar
  8. 8.
    Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32, 1216–1236. doi: 10.1016/j.biotechadv.2014.07.005.CrossRefGoogle Scholar
  9. 9.
    Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877–902. doi: 10.1016/j.biotechadv.2013.04.002.CrossRefGoogle Scholar
  10. 10.
    Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. United States: U.S. Department of Energy—Energy Efficiency and Renewable Energy.Google Scholar
  11. 11.
    Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85, 413–423. doi: 10.1007/s00253-009-2280-5.CrossRefGoogle Scholar
  12. 12.
    Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2, 1–8. doi: 10.1186/1754-6834-2-21.CrossRefGoogle Scholar
  13. 13.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  14. 14.
    Silva, N. L. C., Betancur, G. J. V., Vásquez, M. P., Gomes, E. B., & Pereira Jr., N. (2011). Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Applied Biochemistry and Biotechnology, 163, 928–936. doi: 10.1007/s12010-010-9096-8.CrossRefGoogle Scholar
  15. 15.
    González-Vara, A., Pinelli, D., Rossi, M., Fajner, D., Magelli, F., & Matteuzzi, D. (1996). Production of L(+) and D(−) lactic acid isomers by Lactobacillus casei subsp. casei DSM 20011 and Lactobacillus coryniformis subsp. torquens DSM 20004 in continuous fermentation. Journal of Fermentation and Bioengineering, 81, 548–552.CrossRefGoogle Scholar
  16. 16.
    Yáñez, R., Moldes, A. B., Alonso, J. L., & Parajó, J. C. (2003). Production of D(−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 25, 1161–1164.CrossRefGoogle Scholar
  17. 17.
    Yáñez, R., Alonso, J. L., & Parajó, J. C. (2005). D-lactic acid production from waste cardboard. Journal of Chemical Technology and Biotechnology, 80, 76–84. doi: 10.1002/jctb.1160.CrossRefGoogle Scholar
  18. 18.
    Marques, S., Santos, J. A. L., Gírio, F. M., & Roseiro, J. C. (2008). Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Engineering Journal, 41, 210–216. doi: 10.1016/j.bej.2008.04.018.CrossRefGoogle Scholar
  19. 19.
    Budhavaram, N. K., & Fan, Z. (2009). Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology, 100, 5966–5972. doi: 10.1016/j.biortech.2009.01.080.CrossRefGoogle Scholar
  20. 20.
    Wee, Y. J., & Ryu, H. W. (2009). Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresource Technology, 100, 4262–4270. doi: 10.1016/j.biortech.2009.03.074.CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., & Vadlani, P. V. (2013). D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Biotechnology and Bioprocess Engineering, 36, 1897–1904. doi: 10.1007/s00449-013-0965-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anelize de Oliveira Moraes
    • 1
  • Ninoska Isabel Bojorge Ramirez
    • 1
  • Nei PereiraJr
    • 2
    Email author
  1. 1.Departamento de Engenharia Química e PetróleoUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Centro de Tecnologia, Escola de Química, Departamento de Engenharia BioquímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations