Applied Biochemistry and Biotechnology

, Volume 180, Issue 8, pp 1559–1573 | Cite as

Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting

  • Junko MasudaEmail author
  • Hiroshi Kawamoto
  • Warren Strober
  • Eiji Takayama
  • Akifumi Mizutani
  • Hiroshi Murakami
  • Tomokatsu Ikawa
  • Atsushi Kitani
  • Narumi Maeno
  • Tsukasa Shigehiro
  • Ayano Satoh
  • Akimasa Seno
  • Vaidyanath Arun
  • Tomonari Kasai
  • Ivan J. Fuss
  • Yoshimoto Katsura
  • Masaharu Seno


Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.


TCF3 (E2A) Artificial transcription factor TALE technology 



This work was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI, grant numbers 25860797, and Okayama Foundation for Science and Technology.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no financial or commercial conflicts of interest.


  1. 1.
    Galy, A., Travis, M., Cen, D., & Chen, B. (1995). Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity, 3, 459–473.CrossRefGoogle Scholar
  2. 2.
    Seita, J., & Weissman, I. L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 2, 640–653.Google Scholar
  3. 3.
    Michallet, M., Philip, T., Philip, I., Godinot, H., Sebban, C., Salles, G., et al. (2000). Transplantation with selected autologous peripheral blood CD34+ Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Experimental Hematology, 28, 858–870.CrossRefGoogle Scholar
  4. 4.
    Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S. M., et al. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 518, 542–546.CrossRefGoogle Scholar
  5. 5.
    Zakrzewski, J. L., van den Brink, M. R. M., & Hubbell, J. A. (2014). Overcoming immunological barriers in regenerative medicine. Nature Biotechnology, 32, 786–794.CrossRefGoogle Scholar
  6. 6.
    Moretta, L., Pietra, G., Montaldo, E., Vacca, P., Pende, D., Falco, M., et al. (2014). Human NK cells: from surface receptors to the therapy of leukemias and solid tumors. Frontiers in Immunology, 5, 87.CrossRefGoogle Scholar
  7. 7.
    Akashi, K., Traver, D., Miyamoto, T., & Weissman, I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature, 404, 193–197.CrossRefGoogle Scholar
  8. 8.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & SJ, M. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.CrossRefGoogle Scholar
  9. 9.
    Wagner, W., Bork, S., Horn, P., Krunic, D., Walenda, T., Diehlmann, A., et al. (2009). Aging and replicative senescence have related effects on human stem and progenitor cells. PloS One, 4, e5846.CrossRefGoogle Scholar
  10. 10.
    June, C. H. (2007). Adoptive T cell therapy for cancer in the clinic. The Journal of Clinical Investigation, 117, 1466–1476.CrossRefGoogle Scholar
  11. 11.
    Cheng, M., Chen, Y., Xiao, W., Sun, R., & Tian, Z. (2013). NK cell-based immunotherapy for malignant diseases. Cellular & Molecular Immunology, 10, 230–252.CrossRefGoogle Scholar
  12. 12.
    Kelly, S. S., Sola, C. B. S., de Lima, M., & Shpall, E. (2009). Ex vivo expansion of cord blood. Bone Marrow Transplantation, 44, 673–681.CrossRefGoogle Scholar
  13. 13.
    Wagner, J. E., Rosenthal, J., Sweetman, R., Shu, X. O., Davies, S. M., Ramsay, N. K., et al. (1996). Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood, 88, 795–802.Google Scholar
  14. 14.
    Kurtzberg, J. (2009). Update on umbilical cord blood transplantation. Current Opinion in Pediatrics, 21, 22–29.CrossRefGoogle Scholar
  15. 15.
    Quong, M. W., Romanow, W. J., & Murre, C. (2002). E protein function in lymphocyte development. Annual Review of Immunology, 20, 301–322.CrossRefGoogle Scholar
  16. 16.
    Semerad, C. L., Mercer, E. M., Inlay, M. A., Weissman, I. L., & Murre, C. (2009). E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proceedings of the National Academy of Sciences of the United States of America, 106, 1930–1935.CrossRefGoogle Scholar
  17. 17.
    Greenbaum, S., & Zhuang, Y. (2002). Identification of E2A target genes in B lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proceedings of the National Academy of Sciences of the United States of America, 99, 15030–15035.CrossRefGoogle Scholar
  18. 18.
    Belle, I., & Zhuang, Y. (2014). E proteins in lymphocyte development and lymphoid diseases. Current Topics in Developmental Biology, 110, 153–187.CrossRefGoogle Scholar
  19. 19.
    Ikawa, T., Masuda, K., Huijskens, M. J. A. J., Satoh, R., Kakugawa, K., Agata, Y., et al. (2015). Induced developmental arrest of early hematopoietic progenitors leads to the generation of leukocyte stem cells. Stem Cell Reports, 5, 716–727.CrossRefGoogle Scholar
  20. 20.
    Ikawa, T., Kawamoto, H., Wright, L. Y. T., & Murre, C. (2004). Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity, 20, 349–360.CrossRefGoogle Scholar
  21. 21.
    Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., et al. (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 31, 458–466.CrossRefGoogle Scholar
  22. 22.
    Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.CrossRefGoogle Scholar
  23. 23.
    Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, e82.CrossRefGoogle Scholar
  24. 24.
    Uhde-Stone, C., Gor, N., Chin, T., Huang, J., & B, L. (2013). A do-it-yourself protocol for simple transcription activator-like effector assembly. Biological Procedures Online, 15, 3.CrossRefGoogle Scholar
  25. 25.
    Bernstein, D. L., Le Lay, J. E., Ruano, E. G., & Kaestner, K. H. (2015). TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. The Journal of Clinical Investigation, 125, 1998–2006.CrossRefGoogle Scholar
  26. 26.
    Ma, N., Liao, B., Zhang, H., Wang, L., Shan, Y., Xue, Y., et al. (2013). Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. The Journal of Biological Chemistry, 288, 34671–34679.CrossRefGoogle Scholar
  27. 27.
    Spira, J., Povey, S., Wiener, F., Klein, G., & Andersson-Anvret, M. (1977). Chromosome banding, isoenzyme studies and determination of Epstein-Barr virus DNA content on human Burkitt lymphoma/mouse hybrids. International Journal of Cancer, 20, 849–853.CrossRefGoogle Scholar
  28. 28.
    Uhde-Stone, C., Cheung, E., & Lu, B. (2014). TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells. Biochemical and Biophysical Research Communications, 443, 1189–1194.CrossRefGoogle Scholar
  29. 29.
    Uhde-Stone, C., Huang, J., & B, L. (2012). A robust dual reporter system to visualize and quantify gene expression mediated by transcription activator-like effectors. Biological Procedures Online, 14, 8.CrossRefGoogle Scholar
  30. 30.
    Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326.CrossRefGoogle Scholar
  31. 31.
    Murai, K., Murakami, H., & Nagata, S. (1998). Myeloid-specific transcriptional activation by murine myeloid zinc-finger protein 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 3461–3466.CrossRefGoogle Scholar
  32. 32.
    Vogt, M., Dulbecco, R., & Smith, B. (1966). Induction of cellular DNA synthesis by polyoma virus. 3. Induction in productively infected cells. Proceedings of the National Academy of Sciences of the United States of America, 55, 956–960.CrossRefGoogle Scholar
  33. 33.
    Chung, Y.-J., Park, B.-B., Kang, Y.-J., Kim, T.-M., Eaves, C. J., & Oh, I.-H. (2006). Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood, 108, 1208–1215.CrossRefGoogle Scholar
  34. 34.
    I-H, O., & Eaves, C. J. (2002). Overexpression of a dominant negative form of STAT3 selectively impairs hematopoietic stem cell activity. Oncogene, 21, 4778–4787.CrossRefGoogle Scholar
  35. 35.
    Kamitani, S., Togi, S., Ikeda, O., Nakasuji, M., Sakauchi, A., Sekine, Y., et al. (2011). Krüppel-associated box-associated protein 1 negatively regulates TNF-α-induced NF-κB transcriptional activity by influencing the interactions among STAT3, p300, and NF-κB/p65. Journal of Immunology, 187, 2476–2483.CrossRefGoogle Scholar
  36. 36.
    Schmitz, R., Young, R. M., Ceribelli, M., Jhavar, S., Xiao, W., Zhang, M., et al. (2012). Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature, 490, 116–120.CrossRefGoogle Scholar
  37. 37.
    Thiesen, H. J. (1996). From repression domains to designer zinc finger proteins: a novel strategy of intracellular immunization against HIV. Gene Expression, 5, 229–243.Google Scholar
  38. 38.
    Born, N., Thiesen, H.-J., & Lorenz, P. (2014). The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PloS One, 9, e87609.CrossRefGoogle Scholar
  39. 39.
    Bellefroid, E. J., Poncelet, D. A., Lecocq, P. J., Revelant, O., & Martial, J. A. (1991). The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proceedings of the National Academy of Sciences of the United States of America, 88, 3608–3612.CrossRefGoogle Scholar
  40. 40.
    Matsuda, E., Agata, Y., Sugai, M., Katakai, T., Gonda, H., & Shimizu, A. (2001). Targeting of Krüppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. The Journal of Biological Chemistry, 276, 14222–14229.CrossRefGoogle Scholar
  41. 41.
    Agata, Y., Matsuda, E., & Shimizu, A. (1999). Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1 /KRIP-1). The Journal of Biological Chemistry, 274, 16412–16422.CrossRefGoogle Scholar
  42. 42.
    Hong, S., Hwang, D.-Y., Yoon, S., Isacson, O., Ramezani, A., Hawley, R. G., et al. (2007). Functional analysis of various promoters in lentiviral vectors at different stages of in vitro differentiation of mouse embryonic stem cells. Molecular Therapy, 15, 1630–1639.CrossRefGoogle Scholar
  43. 43.
    Ramezani, A., Hawley, T. S., & Hawley, R. G. (2000). Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Molecular Therapy, 2, 458–469.CrossRefGoogle Scholar
  44. 44.
    Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.CrossRefGoogle Scholar
  45. 45.
    Drozd, A. M., Walczak, M. P., Piaskowski, S., Stoczynska-Fidelus, E., Rieske, P., & Grzela, D. P. (2015). Generation of human iPSC from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Research & Therapy, 6, 122.CrossRefGoogle Scholar
  46. 46.
    Diecke, S., Jung, S. M., Lee, J., & Ju, J. H. (2014). Recent technological updates and clinical applications of induced pluripotent stem cells. The Korean Journal of Internal Medicine, 29, 547–557.CrossRefGoogle Scholar
  47. 47.
    Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., et al. (2010). A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7, 197–199.CrossRefGoogle Scholar
  48. 48.
    Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., & Joung, J. K. (2013). CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 10, 977–979.CrossRefGoogle Scholar
  49. 49.
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.CrossRefGoogle Scholar
  50. 50.
    Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife, 2, e00471.CrossRefGoogle Scholar
  51. 51.
    Kearns, N. A., Genga, R. M. J., Enuameh, M. S., Garber, M., Wolfe, S. A., & Maehr, R. (2014). Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 141, 219–223.CrossRefGoogle Scholar
  52. 52.
    Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451.CrossRefGoogle Scholar
  53. 53.
    Hu, J., Lei, Y., Wong, W.-K., Liu, S., Lee, K.-C., He, X., et al. (2014). Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Research, 42, 4375–4390.CrossRefGoogle Scholar
  54. 54.
    Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.CrossRefGoogle Scholar
  55. 55.
    Zhang, Z., Wu, E., Qian, Z., & Wu, W.-S. (2014). A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets. Scientific Reports, 4, 7338.CrossRefGoogle Scholar
  56. 56.
    Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., et al. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31, 822–826.CrossRefGoogle Scholar
  57. 57.
    Yamaguchi, M., Hirayama, F., Murahashi, H., Azuma, H., Sato, N., Miyazaki, H., et al. (2002). Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy, 4, 109–118.CrossRefGoogle Scholar
  58. 58.
    Takubo, K., Nagamatsu, G., Kobayashi, C. I., Nakamura-Ishizu, A., Kobayashi, H., Ikeda, E., et al. (2013). Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell, 12, 49–61.CrossRefGoogle Scholar
  59. 59.
    Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423, 409–414.CrossRefGoogle Scholar
  60. 60.
    Ring, A., Kim, Y.-M., & Kahn, M. (2014). Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Reviews, 10, 512–525.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Junko Masuda
    • 1
    • 2
    Email author
  • Hiroshi Kawamoto
    • 3
    • 4
  • Warren Strober
    • 2
  • Eiji Takayama
    • 5
  • Akifumi Mizutani
    • 1
  • Hiroshi Murakami
    • 1
  • Tomokatsu Ikawa
    • 3
    • 6
  • Atsushi Kitani
    • 2
  • Narumi Maeno
    • 1
  • Tsukasa Shigehiro
    • 1
  • Ayano Satoh
    • 1
  • Akimasa Seno
    • 1
  • Vaidyanath Arun
    • 1
  • Tomonari Kasai
    • 1
  • Ivan J. Fuss
    • 2
  • Yoshimoto Katsura
    • 3
    • 7
  • Masaharu Seno
    • 1
  1. 1.Division of Medical Bioengineering, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  2. 2.Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA
  3. 3.Laboratory for Lymphocyte DevelopmentRIKEN Research Center for Allergy and ImmunologyYokohamaJapan
  4. 4.Department of Immunology, Institute for Frontier Medical SciencesKyoto UniversityKyotoJapan
  5. 5.Department of Oral BiochemistryAsahi University School of DentistryGifuJapan
  6. 6.Laboratory for Immune RegenerationRIKEN Center for Integrative Medical SciencesYokohamaJapan
  7. 7.Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, School of MedicineNihon UniversityTokyoJapan

Personalised recommendations