Applied Biochemistry and Biotechnology

, Volume 180, Issue 7, pp 1401–1415 | Cite as

Biological Pretreatment of Chicken Feather and Biogas Production from Total Broth

  • Regina J. Patinvoh
  • Elisabeth Feuk-Lagerstedt
  • Magnus Lundin
  • Ilona Sárvári Horváth
  • Mohammad J. Taherzadeh
Article

Abstract

Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2–8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C4, a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH4/gVS compared to 105 mlCH4/gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH4/gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.

Keywords

Chicken feather Pretreatment Bacillus substilis strain Keratinase Biogas production Mesophilic Hydrolysate Total broth Bacteria granules 

Notes

Acknowledgments

The authors greatly acknowledge Håkantorp Slakteri AB, Genomfatrsvägen, Sweden for supplying the chicken feathers and Alex Osagie Osadolor for helpful discussion.

References

  1. 1.
    FAOSTAT. (2013) Live animals. Food and Agriculture Organization of the United Nations. FAO Statistics Division 2016. http://faostat.fao.org/site/573/DesktopDefault.aspx?PageID=573#ancor. Accessed 18 Feb 2016.
  2. 2.
    Matikevičienė, V., Masiliūnienė, D. and Grigiškis, S. (2015) Degradation of keratin containing wastes by bacteria with keratinolytic activity. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, pp. 284–289.Google Scholar
  3. 3.
    Wang, L., Xin, J., Li, X., & Wang, Y. (2015). The variability of biomass burning and its influence on regional aerosol properties during the wheat harvest season in North China. Atmospheric Research, 157, 153–163.CrossRefGoogle Scholar
  4. 4.
    Fellahi, S., Zaghloul, T. I., Feuk-Lagerstedt, E., & Taherzadeh, M. J. (2014). A bacillus strain able to hydrolyze alpha- and beta-keratin. Journal of Bioprocessing and Biotechniques, 4, 7.CrossRefGoogle Scholar
  5. 5.
    Johnson, D. K. and Elander, R. T. (2009), In Biomass Recalcitrance, Blackwell Publishing Ltd., pp. 436–453.Google Scholar
  6. 6.
    Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9, 1621–1651.CrossRefGoogle Scholar
  7. 7.
    Zhao, W., Yang, R., Zhang, Y., & Wu, L. (2012). Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion. Green Chemistry, 14, 3352–3360.CrossRefGoogle Scholar
  8. 8.
    Korniłłowicz-Kowalska, T., & Bohacz, J. (2011). Biodegradation of keratin waste: theory and practical aspects. Waste Management, 31, 1689–1701.CrossRefGoogle Scholar
  9. 9.
    Onifade, A. A., Al-Sane, N. A., Al-Musallam, A. A., & Al-Zarban, S. (1998). A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresource Technology, 66, 1–11.CrossRefGoogle Scholar
  10. 10.
    Barone, J. R., Schmidt, W. F., & Gregoire, N. T. (2006). Extrusion of feather keratin. Journal of Applied Polymer Science, 100, 1432–1442.CrossRefGoogle Scholar
  11. 11.
    Cai, C.-G., Lou, B.-G., & Zheng, X.-D. (2008). Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. Journal of Zhejiang University. Science. B, 9, 60–67.CrossRefGoogle Scholar
  12. 12.
    Zaghloul, T. I., Embaby, A. M., & Elmahdy, A. R. (2011). Biodegradation of chicken feathers waste directed by Bacillus subtilis recombinant cells: scaling up in a laboratory scale fermentor. Bioresource Technology, 102, 2387–2393.CrossRefGoogle Scholar
  13. 13.
    Kanchana, R., & Mesta, D. (2013). Native feather degradation by a keratinophilic fungus. International Journal of Chemtech Research, 5, 2947–2954.Google Scholar
  14. 14.
    Kim, J.-D. (2003). Preliminary characterization of keratinolytic enzyme of aspergillus flavus K-03 and its potential in biodegradation of keratin wastes. Mycobiology, 31, 209–213.CrossRefGoogle Scholar
  15. 15.
    Mazotto, A. M., Couri, S., Damaso, M. C. T., & Vermelho, A. B. (2013). Degradation of feather waste by Aspergillus niger keratinases: comparison of submerged and solid-state fermentation. International Biodeterioration & Biodegradation, 85, 189–195.CrossRefGoogle Scholar
  16. 16.
    Forgács, G., Alinezhad, S., Mirabdollah, A., Feuk-Lagerstedt, E., & Horváth, I. S. (2011). Biological treatment of chicken feather waste for improved biogas production. Journal of Environmental Sciences, 23, 1747–1753.CrossRefGoogle Scholar
  17. 17.
    Park, G.-T., & Son, H.-J. (2009). Keratinolytic activity of Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium. Microbiological Research, 164, 478–485.CrossRefGoogle Scholar
  18. 18.
    Wawrzkiewicz, K., Łobarzewski, J., & Wolski, T. (1987). Intracellular keratinase of Trichophyton gallinae. Journal of Medical and Veterinary Mycology, 25, 261–268.CrossRefGoogle Scholar
  19. 19.
    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59, 927–934.CrossRefGoogle Scholar
  20. 20.
    Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M. J., & Horváth, I. S. (2010). Pretreatment of paper tube residuals for improved biogas production. Bioresource Technology, 101, 1206–1212.CrossRefGoogle Scholar
  21. 21.
    APHA-AWWA-WEF. (2005) Standard methods for the examination of water and wastewater 21st Edition. 21st Edition ed., American Public Health Association, 800 I Street, NW, Washington, DC 20001–3710.Google Scholar
  22. 22.
    LABCONCO. (2015) A guide to Kjeldahl nitrogen determination. Methods and Apparatus. LABCONCO, An Industry Service Publication. Accessed 8th of April. http://www.expotechusa.com/catalogs/labconco/pdf/KJELDAHLguide.PDF. ed.
  23. 23.
    Haug, R. T. (1993), In The Practical Handbook of Compost Engineering., Taylor & Francis, pp. 247–257Google Scholar
  24. 24.
    Carpenter, D. C. (2010), In Food Analysis Laboratory Manual: Food Science Texts Series, (Nielsen, S. S., ed.), Springer US, pp. pp 29–37.Google Scholar
  25. 25.
    Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresource Technology, 86, 239–243.CrossRefGoogle Scholar
  26. 26.
    Korniłłowicz-Kowalska, T. (1997). Studies on the decomposition of keratin wastes by saprotrophic microfungi. I. Criteria for evaluating keratinolytic activity. Acta Mycologica, 32, 51–79.CrossRefGoogle Scholar
  27. 27.
    Ghasemi, Y., Shahbazi, M., Rasoul-Amini, S., Kargar, M., Safari, A., Kazemi, A., & Montazeri-Najafabady, N. (2012). Identification and characterization of feather-degrading bacteria from keratin-rich wastes. Annals of Microbiology, 62, 737–744.CrossRefGoogle Scholar
  28. 28.
    Deivasigamani, B., & Alagappan, K. M. (2008). Industrial application of keratinase and soluble proteins from feather keratins. Journal of Environmental Biology, 29, 933–936.Google Scholar
  29. 29.
    Bálint, B., Bagi, Z., Tóth, A., Rákhely, G., Perei, K., & Kovács, K. (2005). Utilization of keratin-containing biowaste to produce biohydrogen. Applied Microbiology and Biotechnology, 69, 404–410.CrossRefGoogle Scholar
  30. 30.
    Deublein, D. and Steinhauser, A. (2011) Biogas from waste and renewable resources. ed. Wiley-VCH.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Regina J. Patinvoh
    • 1
  • Elisabeth Feuk-Lagerstedt
    • 1
  • Magnus Lundin
    • 1
  • Ilona Sárvári Horváth
    • 1
  • Mohammad J. Taherzadeh
    • 1
  1. 1.Swedish Centre for Resource RecoveryUniversity of BoråsBoråsSweden

Personalised recommendations