Applied Biochemistry and Biotechnology

, Volume 180, Issue 7, pp 1286–1300 | Cite as

Structural Characterization of a Novel Antioxidant Pigment Produced by a Photochromogenic Microbacterium oxydans Strain

  • Fatma Meddeb-Mouelhi
  • Jessica Kelly Moisan
  • Jodrey Bergeron
  • Benoit Daoust
  • Marc Beauregard
Article

Abstract

The Microbacteriaceae family, such as Microbacterium, is well known for its ability to produce carotenoid-type pigments, but little has been published on the structure of such pigments. Here, we isolated the yellow pigment that is responsible for the yellowish color of a Microbacterium oxydans strain isolated from a decomposing stump of a resinous tree. The pigment, which is synthesized when the bacterium is grown under light, was purified and characterized using several spectroscopic analyses, such as ultraviolet-visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance (1H NMR, 13C NMR), and high-resolution mass spectrometry (HRMS). From these analysis, a molecular formula (C27H42O2) and a chemical structure (8-hydroxymethyl-2,4,12-trimethyl-14-(2,6,6-trimethyl-cyclohex-2-enyl)-teradeca-3,7,9,11,13-pentan-2-ol) were deduced. The chemical properties of the pigment, such as aqueous stability at different pH, stability in different organic solvents, and antioxidant capacity, are also reported. Together, these data and previous studies have resulted in the identification of a new antioxidant pigment produced by M. oxydans. To the best of our knowledge, this is the first thorough investigation of this carotenoid-like pigment in the Microbacterium genera.

Keywords

Carotenoid Spectroscopy Microbacterium oxydans Photochromogenic bacteria Culture Wood decay 

Supplementary material

12010_2016_2167_MOESM1_ESM.docx (203 kb)
ESM 1(DOCX 202 kb)

References

  1. 1.
    Mortensen, A. (2006). Carotenoids and other pigments as natural colorants. Pure and Applied Chemistry, 78(8), 1477–1491.CrossRefGoogle Scholar
  2. 2.
    Babitha, S. (2009). Biotechnology for agro-industrial residues utilisation. In P. S. Nigam & A. Pandey (Eds.), Chap 8: Microbial pigments. Berlin: Springer.Google Scholar
  3. 3.
    Wang, F., Jiang, J. G., & Chen, Q. (2007). Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C30, C35, C40, C45, C50 carotenoids. Biotechnology Advances, 25, 211–222.CrossRefGoogle Scholar
  4. 4.
    Sajilata, M. G., Singhal, R. S., & Kamat, M. Y. (2008). The carotenoid pigment zeaxanthin—a review. Comprehensive Reviews in Food Science and Food Safety, 7, 29–49.CrossRefGoogle Scholar
  5. 5.
    Delgado-Vargas, F., Jiménez, A. R., & Paredes-Lopez, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40, 173–289.CrossRefGoogle Scholar
  6. 6.
    Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24, 345–351.CrossRefGoogle Scholar
  7. 7.
    Nishino, H., Murakoshi, M., Tokuda, H., & Satomi, Y. (2009). Cancer prevention by carotenoids. Archives of Biochemistry and Biophysics, 483, 165–168.CrossRefGoogle Scholar
  8. 8.
    Rajagopal, L., Sundari, C. S., Balasubramanian, D., & Sonti, R. V. (1997). The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Letters, 415(2), 125–128.CrossRefGoogle Scholar
  9. 9.
    Moliné, M., Flores, M. R., Libkind, D., Diéguez, M. C., Farías, M. E., & Van Broock, M. (2010). Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochemical & Photobiological Sciences, 9, 1145–1151.CrossRefGoogle Scholar
  10. 10.
    Mata-Gómez, L. C., Montañez, J. C., Méndez-Zavala, A., & Aguilar, C. N. (2014). Biotechnological production of carotenoids by yeasts: an overview. Microbial Cell Factories, 13, 1–12.CrossRefGoogle Scholar
  11. 11.
    Sasidharan, P., Raja, R., Karthik, C., Ranandkumar, S., & Indra, A. P. (2013). Isolation and characterization of yellow pigment producing Exiguobacterium sps. Journal of Biomolecular Techniques, 4(4), 632–635.Google Scholar
  12. 12.
    Ausich, R. L. (1997). Commercial opportunities for carotenoid production by biotechnology. Pure and Applied Chemistry, 69(10), 2169–2173.CrossRefGoogle Scholar
  13. 13.
    Ahmad, W. A., Yusof, N. Z., Nordin, N., Zakaria, Z. A., & Rezali, M. F. (2012). Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Applied Biochemistry and Biotechnology, 167, 1220–1234.CrossRefGoogle Scholar
  14. 14.
    Liu, G. Y., & Nizet, V. (2009). Color me bad: microbial pigments as virulence factors. Trends in Microbiology, 17(9), 406–413.CrossRefGoogle Scholar
  15. 15.
    Correa-Llantén, D. N., Amenábar, M. J., & Blamey, J. M. (2012). Antioxidant capacity of novel pigments from an Antarctic bacterium. Journal of Microbiology, 50(3), 374–379.CrossRefGoogle Scholar
  16. 16.
    Dufossé, L. (2006). Microbial production of food grade pigments. Food Technology and Biotechnology, 44(3), 313–321.Google Scholar
  17. 17.
    Meddeb-Mouelhi, F., Moisan, J. K., & Beauregard, M. (2015). Characterization of bacteria community isolated from wood decay. The Biochemical Journal, 10(1), 1–14.Google Scholar
  18. 18.
    Sørensen, L., Hantke, A., & Eriksen, N. T. (2013). Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. Journal of the Science of Food and Agriculture, 93, 2933–2938.CrossRefGoogle Scholar
  19. 19.
    Abdelnasser, S. S. I. (2008). Production of carotenoids by a newly isolated marine Micrococcus sp. Biotechnology, 7(3), 469–478.CrossRefGoogle Scholar
  20. 20.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9), 1231–1237.CrossRefGoogle Scholar
  21. 21.
    Godinho, A., & Bhosle, S. (2008). Carotenes produced by alkaliphilic orange-pigmented strain of Microbacterium arborescens—AGSB isolated from coastal sand dunes. Indian Journal of Marine Science, 37(3), 307–312.Google Scholar
  22. 22.
    Engler, G. (1985). NMR of carotenoids new experimental techniques. Pure and Applied Chemistry, 57(5), 801–821.Google Scholar
  23. 23.
    Van den Berg, R., Haenen Guido, R. R. M., Van den Berg, H., & Bast, A. (1999). Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry, 66, 511–517.CrossRefGoogle Scholar
  24. 24.
    Whitman, W., Goodfellow, M., Kämpfer, P., Busse, H. J., Trujillo, M., Ludwig, W., & Suzuki, K. (2012). Bergey’s manual of systematic bacteriology volume 5: the Actinobacteria. New-York: Springer.Google Scholar
  25. 25.
    Dhanjal, S., Kaur, I., Korpole, S., Schumann, P., Cameotra, S. S., Pukall, R., Klenk, H. P., & Mayilraj, S. (2011). Agrococcus carbonis sp. nov., isolated from soil of a coal mine. International Journal of Systematic and Evolutionary Microbiology, 61, 1253–1258.CrossRefGoogle Scholar
  26. 26.
    Takeuchi, M., & Hatano, K. (1989). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. International Journal of Systematic Bacteriology, 48, 739–747.CrossRefGoogle Scholar
  27. 27.
    Wieser, M., Schumann, P., Martin, K., Altenburger, P., Burghardt, J., Lubitz, W., & Busse, H. J. (1999). Agrococcus citreus sp. nov. isolated from a medieval wall painting of the chapel of Castle Herberstein (Austria). International Journal of Systematic Bacteriology, 49, 1165–1170.CrossRefGoogle Scholar
  28. 28.
    Mawlankar, R. R., Mual, P., Sonalkar, V. V., Thorat, M. N., Verma, A., Srinivasan, K., & Dastager, S. G. (2015). Microbacterium enclense sp. nov. isolated from sediment sample. International Journal of Systematic and Evolutionary Microbiology, 65, 2064–2070.CrossRefGoogle Scholar
  29. 29.
    Trutko, S. M., Dorofeeva, L. V., Evtushenko, L. I., Ostrovskii, D. N., Hintz, M., Wiesner, J., Jomaa, H., Baskunov, B. P., & Akimenko, V. K. (2005). Isoprenoid pigments in representatives of the family Microbacteriaceae. Microbiology, 74(3), 284–289.CrossRefGoogle Scholar
  30. 30.
    Prema, A., Janakiraman, U., Manivasagam, T., & Thenmozhi, A. J. (2015). Neuroprotective effect of lycopene against MPTP induced experimental Parkinson’s disease in mice. Neuroscience Letters, 599(1), 12–19.CrossRefGoogle Scholar
  31. 31.
    Yamamoto, K., & Asano, Y. (2015). Efficient production of lumichrome by Microbacterium sp. TPU3598. Applied and Environmental Microbiology, 81(21), 7360–7367.CrossRefGoogle Scholar
  32. 32.
    Osman, S., Peeters, Z., La Duc, M. T., Mancinelli, R., Ehrenfreund, P., & Venkateswaran, K. (2008). Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Applied and Environmental Microbiology, 74(4), 959–970.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fatma Meddeb-Mouelhi
    • 1
    • 2
  • Jessica Kelly Moisan
    • 1
    • 2
  • Jodrey Bergeron
    • 3
  • Benoit Daoust
    • 3
  • Marc Beauregard
    • 1
    • 2
  1. 1.Centre de Recherche sur les Matériaux LignocellulosiquesUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.PROTEOUniversité Laval QuébecCanada
  3. 3.Département de Chimie, Biochimie et PhysiqueUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations