Applied Biochemistry and Biotechnology

, Volume 180, Issue 4, pp 766–779 | Cite as

Regeneration-Based Quantification of Coumarins (Scopoletin and Scoparone) in Abutilon indicum In Vitro Cultures

  • Kiranmayee RaoEmail author
  • Bhuvaneswari Chodisetti
  • Suryakala Gandi
  • Archana Giri
  • P. B. Kavi Kishor


Abutilon indicum exploited for its immense value has been propagated successfully through multiple shoot induction and somatic embryogenesis. Direct regeneration (8.20 ± 0.83 shoots) was achieved from nodal explants using 0.5 mg/l kinetin (Kn) in MS media. The basal callus from nodal explants turned embryogenic on subsequent introduction of 0.2 mg/l TDZ into the Kn-supplemented media, giving rise to somatic embryos. The embryogenic potential of calli expressed in terms of embryo-forming capacity (EFC) increased from 8.15 EFC to 20.95 EFC after plasmolysis. The phytochemical analysis (HPLC) for the presence of scopoletin and scoparone has revealed a unique accumulation pattern, with higher levels of scopoletin during the earlier stages and scoparone in the later stages of development. The embryogenic calli contained the highest amount of coumarins (99.20 ± 0.97 and 61.03 ± 0.47 μg/gFW, respectively) followed by regenerated plant (9.43 ± 0.20 and 36.36 ± 1.19 μg/gFW, respectively), obtained via somatic embryogenesis. Rapid multiplication of A. indicum equipped with two potent coumarins is important in order to meet the commercial demand for combat against dreadful diseases, thereby providing a new platform for plant-based drugs and their manufacture on a commercial scale.


A. indicum Coumarins Scopoletin Scoparone Somatic embryogenesis HPLC 



This work was funded by the University Grants Commission (UGC) in the form of Dr. D.S. Kothari postdoctoral fellowship to Dr. Kiranmayee Rao under the grant number [no.F.4-2/2006(BSR)/13-738/2012(BSR)].


  1. 1.
    Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International, 963248, 1–14.CrossRefGoogle Scholar
  2. 2.
    Iranshahi, M., Askari, M., Sahebkar, A., & Hadjipavlou-Litina, D. (2009). Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU, 17, 99–103.Google Scholar
  3. 3.
    Bogdal, D. (1998). Coumarins: fast synthesis by Knoevenagel condensation under microwave irradiation. Journal of Chemical Research, 8, 468–469.CrossRefGoogle Scholar
  4. 4.
    Yoganarasimhan, S. N. (2000). Medicinal plants of India. Bangalore: Cyber Media.Google Scholar
  5. 5.
    Kirtikar, K. R., & Basu, B. D. (1991). Indian medicinal plants (2nd ed., pp. 371–72). Allahabad: Lalit Mohan Babu and Co.Google Scholar
  6. 6.
    Chopra, R. N., Nayer, S. L., & Chopra, I. C. (1986). Glossary of Indian medicinal plants. New Delhi: Publication and Information Directorate, CSIR.Google Scholar
  7. 7.
    Kirtikar, K. R., & Basu, B. D. (1975). Indian medicinal plants (1st ed., pp. 894–895). Dehra Dun: International book distributor.Google Scholar
  8. 8.
    Nadkarni, K.M. (1976). Indian materia medica, Volume I, 3rd ed., Popular Prakashan, Mumbai, p 8.Google Scholar
  9. 9.
    Gaind, K. N., & Chopra, K. S. (1976). Phytochemical investigation of Abutilon indicum. Planta Medica, 30, 174–188.CrossRefGoogle Scholar
  10. 10.
    Seetharam, Y. N., Chalageri, G., Ramachandra, S., & Bheemachar, S. (2002). Hypoglycemic activity of Abutilon indicum leaf extracts in rats. Fitoterapia, 73, 156–159.CrossRefGoogle Scholar
  11. 11.
    Beha, E., Jung, A., Wiesner, J., Rimpler, H., Lanzer, M., & Heinrich, M. (2004). Antimalarial activity of extracts of Abutilon grandiflorum G. Don—a traditional Tanzanian medicinal plant. Phytotherapy Research, 18, 236–240.CrossRefGoogle Scholar
  12. 12.
    Porchezhian, E., & Ansari, S. H. (2005). Hepatoprotective activity of Abutilon indicum on experimental liver damage in rats. Phytomedicine, 12, 62–64.CrossRefGoogle Scholar
  13. 13.
    Mithilesh, S., & Rakhi, C. (2010). Improved clonal propagation of Spilanthes acmella Murr for production of scopoletin. Plant Cell Tissue & Organ Culture, 103, 243–253.CrossRefGoogle Scholar
  14. 14.
    Sarfaraj, H. M., Sheeba, F., Mohammad, A., Sarfaraz, A. M., Akhlakquer, R. M., & Srivastava, A. K. (2014). Phytochemical investigation and simultaneous estimation of bioactive lupeol and stigmasterol in Abutilon indicum by validated HPTLC method. Journal of Coastal Life Medicine, 2, 394–401.Google Scholar
  15. 15.
    Kang, T. H., Pae, H. O., Jeong, S. J., Yoo, J. C., Choi, B. M., Jun, C. D., Chung, H. T., Miyamoto, T., Higuchi, R., & Kim, Y. C. (1999). Scopoletin: an inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Planta Medica, 65, 400–403.CrossRefGoogle Scholar
  16. 16.
    Chang, H. M., & But, P. P. H. (1987). In H-M. Chang., & P-H. B. Paul (Ed.), Pharmacology and applications of Chinese materia medica (pp. 867–871). Singapore: World Scientific.Google Scholar
  17. 17.
    Huang, H. C., Huang, Y. L., & Chang, J. H. (1992a). Possible mechanism of immunosuppressive effect of scoparone (6,7-dimethoxycoumarin). European Journal of Pharmacology, 217, 143–148.CrossRefGoogle Scholar
  18. 18.
    Huang, H. C., Lee, C. R., & Weng, Y. L. (1992b). Vasodilator effect of scoparone (6,7-dimethoxycoumarin) from a Chinese herb. European Journal of Pharmacology, 218, 123–128.CrossRefGoogle Scholar
  19. 19.
    Canter, H. P., Thomas, H., & Ernst, E. (2005). Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends in Biotechnology, 23, 180–185.CrossRefGoogle Scholar
  20. 20.
    Jing, L., Juan, W., Jinxin, L., Dahui, L., Hongfa, L., Wenyuan, G., Jianli, L., & Shujie, L. (2016). Aspergillus niger enhance bioactive compounds biosynthesis as well as expression of functional genes in adventitious roots of Glycyrrhiza uralensis Fisch. Applied Biochemistry and Biotechnology, 178, 576–593.CrossRefGoogle Scholar
  21. 21.
    Ravishankar, G. A., & Rao, R. S. (2000). Biotechnological production of phytopharmaceuticals. Journal of Biochemistry Molecular Biology and Biophysics, 4, 73–102.Google Scholar
  22. 22.
    Raemakers, C. J. J. M., Jacobsen, E., & Visser, R. G. F. (1995). Secondary somatic embryogenesis and applications in plant breeding. Euphytica, 81, 93–107.CrossRefGoogle Scholar
  23. 23.
    Merkle S. A. (1997), in Biotechnology of ornamental plants: somatic embryogenesis in ornamentals (R. L. Geneve, J. E. Preece, & S. A. Merkle., ed.), CAB International, Wallingford, pp. 13–33.Google Scholar
  24. 24.
    Gaj, M. D. (2001). Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tissue & Organ Culture, 64, 39–46.CrossRefGoogle Scholar
  25. 25.
    Shohael, A. M., Ali, M. B., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2013). Effects of Murashige and Skoog medium strength on germination and secondary metabolites production of Eleutherococcus senticosus’s somatic embryos in bioreactor. International Journal of Bioscience, 3, 155–163.Google Scholar
  26. 26.
    Rout, J. R., Manorama, M., Ritarani, D., & Santilata, S. (2009). In vitro micropropagation of Abutilon indicum L. through leaf explants. Plant Tissue Culture & Biotechnology, 19, 177–184.Google Scholar
  27. 27.
    Sudarshana, M. S., Nissar, A. R., & Girish, H. V. (2016). In vitro regenerative potentials of the medicinal plant Abutilon indicum (L.) Sweet. African Journal of Biotechnology, 15, 472–480.CrossRefGoogle Scholar
  28. 28.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  29. 29.
    Shiveirou, R., Suman, K., & Pramod, T. (2014). Plant regeneration through direct somatic embryogenesis from immature zygotic embryos of the medicinal plant, Paris polyphylla Sm. Plant Cell Tissue and Organ Culture, 118, 44.Google Scholar
  30. 30.
    Kiranmayee, R., Bhuvaneswari, C. H., Suryakala, G., Lakshmi, N. M., & Archana, G. (2011). Direct and indirect organogenesis of Alpinia galanga and the phytochemical analysis. Applied Biochemistry and Biotechnology, 165, 1366–1378.CrossRefGoogle Scholar
  31. 31.
    Johansen, D. A. (1940). Plant microtechnique, 1st ed., McGraw-Hill, New York.Google Scholar
  32. 32.
    Shinde, P. B., Katekhaye, S. D., Mulik, M. B., & Laddha, K. S. (2014). Rapid simultaneous determination of marmelosin, umbelliferone and scopoletin from Aegle marmelos fruit by RP-HPLC. Journal of Food Science & Technology, 51, 2251–2255.CrossRefGoogle Scholar
  33. 33.
    Ma, C. H., Ke, W., Sun, Z. L., Peng, J. Y., Li, Z. X., Zhou, X., Fan, G. R., & Huang, C. G. (2006). Large-scale isolation and purification of scoparone from Herba artemisiae scopariae by high-speed counter-current chromatography. Chromatographia, 64, 83–87.CrossRefGoogle Scholar
  34. 34.
    Mohite, M. S., Shelar, P. A., Raje, V. N., Babar, S. J., & Sapkal, R. K. (2012). Review on pharmacological properties of Abutilon indicum. Asian Journal of Pharmaceutical Research, 2, 156–160.Google Scholar
  35. 35.
    Khan, R. S., Senthi, M., Rao, P. C., Basha, A., Alvala, M., Tummuri, D., Masubuti, H., Fujimoto, Y., & Begum, A. S. (2015). Cytotoxic constituents of Abutilon indicum leaves against U87MG human glioblastoma cells. National Product Research, 29, 1069–1073.CrossRefGoogle Scholar
  36. 36.
    Roshan, S., Ali, S., Khan, A., Tazneem, B., & Purohit, M. G. (2008). Wound healing activity of Abutilon indicum. Pharmacognosy Magazine, 4, 85–88.Google Scholar
  37. 37.
    Mitra, M., Ali, R. L. M., & Zahra, O. A. (2013). The induction of seed germination using sulfuric acid, gibberellic acid and hot water in Robinia pseudoacacia L. International Research Journal of pharmaceutical and Applied Sciences, 4, 96–98.Google Scholar
  38. 38.
    Groot, S. P. C., & Karssen, C. M. (1987). Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta, 171, 525–531.CrossRefGoogle Scholar
  39. 39.
    Mojtaba, K., Javad, H., Ali, A., Alireza, A., Antonio, P., Silvia, T., Lorenzo, G., & Luciana, G. A. (2015). Opposing effects of external gibberellin and daminozide on Stevia growth and metabolites. Applied Biochemistry and Biotechnology, 175, 780–791.CrossRefGoogle Scholar
  40. 40.
    Patrick, V. A., & Bonga, J. M. (2000). Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiology, 20, 921–928.CrossRefGoogle Scholar
  41. 41.
    Feher, A., Pasternak, T. P., & Dudits, D. (2003). Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue & Organ Culture, 74, 201–228.CrossRefGoogle Scholar
  42. 42.
    Gaj, M. D. (2004). Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation, 43, 27–47.CrossRefGoogle Scholar
  43. 43.
    Jiménez, V. M. (2005). Involvement of plant hormones and plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation, 47, 91–110.CrossRefGoogle Scholar
  44. 44.
    Agrawal, D. C., Banerjee, A. K., Kolala, R. R., Dhage, A. B., Kulkarni, A. V., Nalawade, S. M., Hazra, S., & Krishnamurthy, K. V. (1997). In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports, 16, 647–652.CrossRefGoogle Scholar
  45. 45.
    Shinoyama, H., Nomura, Y., Tsuchiya, T., & Kazuma, T. (2004). A simple and efficient method for somatic embryogenesis and plant regeneration from leaves of Chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant Biotechnology, 21, 25–30.CrossRefGoogle Scholar
  46. 46.
    Naing, A. H., Kim, C. K., Yun, B. J., Jin, J. Y., & Lim, K. B. (2013). Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro. Plant Cell Tissue & Organ Culture, 112, 361–368.CrossRefGoogle Scholar
  47. 47.
    Varutharaju, K., Soundarraju, C., Thilip, C., Aslam, A., & Shajahan, A. (2014). High efficiency direct shoot organogenesis from leaf segments of Aerva lanata (L.) Juss. ex Schult by using thidiazuron. The Scientific World Journal, 652919, 1–6.CrossRefGoogle Scholar
  48. 48.
    George, E. F. (1996). Plant propagation by tissue culture: in practice pt.2. England: Exegetics.Google Scholar
  49. 49.
    George, E. F. (1993). Plant propagation by tissue culture: in theory pt.1. England: Exegetics.Google Scholar
  50. 50.
    Mok, M. C., Martin, R. C., & Mok, D. W. S. (2000). Cytokinins: biosynthesis, metabolism and perception. In Vitro Cellular and Developmental Biology–Plant, 36, 102–107.CrossRefGoogle Scholar
  51. 51.
    Khawar, M. K., Sancak, C., Uranbey, S., & Ozcan, S. (2004). Effect of thidiazuron on shoot regeneration from different explants of Lentil (Lens culinaris Medik.) via organogenesis. Turkish Journal of Botany, 28, 421–426.Google Scholar
  52. 52.
    Yang, X., Lu, J., Jaime, A., da Silva, T., & Ma, G. (2012). Somatic embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum. Plant Cell Tissue & Organ Culture, 109, 213–221.CrossRefGoogle Scholar
  53. 53.
    Nolan, K. E., Irwanto, R. R., & Rose, R. J. (2003). Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiology, 133, 218–230.CrossRefGoogle Scholar
  54. 54.
    Hecht, V., Vielle-Calzada, J. P., Hartog, M. V., Schmidt, D. L., Boutilier, K., Grossniklaus, U., & de Vries, S. C. (2001). The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 127, 803–816.CrossRefGoogle Scholar
  55. 55.
    Vasil, V., & Vasil, I. K. (1982). The ontogeny of somatic embryos of Pennisetum americanum (L.) Schum. I. In cultured immature embryos. Botanical Gazette, 14, 454.CrossRefGoogle Scholar
  56. 56.
    Gray, D. J., & Conger, B. V. (1985), in Tissue culture in forestry and agriculture: somatic embryo ontogeny in tissue cultures of orchard grass (R. R. Henke., K. W. Hughes., M. J. Constantin., & A. Hollaender., ed.), Plenum Press, New York, pp. 49–58.Google Scholar
  57. 57.
    Lu, C. Y., & Vasil, I. K. (1985). Histology of somatic embryogenesis in Panicum maximum (guinea grass). American Journal of Botany, 72, 1908.CrossRefGoogle Scholar
  58. 58.
    Dunstan, D. I., Short, K. C., & Thomas, E. (1978). The anatomy of secondary morphogenesis in cultured scutellum tissues of Sorghum bicolor. Protoplasma, 97, 251.CrossRefGoogle Scholar
  59. 59.
    Cionini, P. G., Bennici, A., Alpi, A., & D’Amato, F. (1976). Suspensor, gibberellin and in vitro development of Phaseolus coccineus embryos. Planta, 131, 115–117.CrossRefGoogle Scholar
  60. 60.
    Gray, D. J. (1990), in Biotechnology in tall fescue improvement: somatic cell culture and embryogenesis in Poaceae (Michael J. Kasperbauer., ed.), CRC press, Florida, pp. 25–57.Google Scholar
  61. 61.
    Vasic, D., Alibert, G., & Skoric, D. (2001). Protocols for efficient repetitive and secondary somatic embryogenesis in Helianthus maximiliani (Schrader). Plant Cell Reports, 20, 121–125.CrossRefGoogle Scholar
  62. 62.
    Ćosić, T., Vinterhalter, B., Vinterhalter, D., Mitić, N., Cingel, A., Savić, J., Bohanec, B., & Ninković, S. (2013). In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes). In Vitro Cellular and Developmental Biology–Plant, 49, 294–303.CrossRefGoogle Scholar
  63. 63.
    Xu, P., Zhang, Z., Wang, B., Xia, X., & Jia, J. (2012). Somatic embryogenesis and plant regeneration in chrysanthemum (Yuukou). Plant Cell Tissue & Organ Culture, 111, 393–397.CrossRefGoogle Scholar
  64. 64.
    Anisuzzaman, M., Jarin, S., Naher, K., Akhtar, M. M., Alam, M. J., Khalekuzzaman, M., Alam, I., & Alam, M. F. (2008). Callus induced organogenesis in Okra (Abelmoschus esculentus L. Moench). Asian Journal of Plant Sciences, 7, 677–681.CrossRefGoogle Scholar
  65. 65.
    Charles, R. S., Sakhanokho, H. F., Toueix, Y., Dje, Y., Sangare, A., & Branchard, M. (2010). Protocols for callus and somatic embryo initiation for Hibiscus sabdariffa L. (Malvaceae): influence of explant type, sugar, and plant growth regulators. Australian Journal of Crop Science, 4, 98–106.Google Scholar
  66. 66.
    Syed, S. H., Tayyab, H., & Riazuddin, S. (2005). Recurrent somatic embryogenesis and twin embryo production in cotton. Pakistan Journal of Biological Sciences, 8, 141–145.CrossRefGoogle Scholar
  67. 67.
    Manoj, K., Harpal, S., Anoop, K. S., Praveen, C. V., & Pradhyumna, K. S. (2013). Induction and establishment of somatic embryogenesis in elite Indian cotton cultivar (Gossypium hirsutum L. cv Khandwa-2). Plant Signaling & Behavior, 8, e26761–e26766.Google Scholar
  68. 68.
    Pathi, K. M., Tula, S., & Tuteja, N. (2013). High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium mediated genetic transformation of tobacco. Plant Signaling & Behavior, 8, e24354.CrossRefGoogle Scholar
  69. 69.
    Anita, W., Agnieszka, G., Anna, P. B., Norikazu, T., Sabina, Z., Rafal, W., Zbigniew, P., Stefan, M., & Marcin, F. (2012). Identification of genes up regulated during somatic embryogenesis of cucumber. Plant Physiology Biochemistry, 50, 54–64.CrossRefGoogle Scholar
  70. 70.
    Rey, H. Y., Faloci, M., Medina, R., Dolce, N., Engelmann, F., & Mroginski, L. (2013). Cryopreservation of Arachis pintoi (Leguminosae) somatic embryos. Cryoletters, 34, 571–582.Google Scholar
  71. 71.
    Bakrudeen, A. A. A., & Arun, K. R. (2009). In vitro propagation of Monocot (Costus pictus D. Don)—an antidiabetic medicinal plant. Journal of Agricultural Technology, 5, 361–369.Google Scholar
  72. 72.
    Ewelina, P., Tukasz, K., Przemystaw, S., & Halina, W. (2015). Shoot organogenesis, molecular analysis and secondary metabolite production of micropropagated Rehmannia glutinosa Libosch. Plant Cell Tissue and Organ Culture, 120, 539–549.CrossRefGoogle Scholar
  73. 73.
    Kim, B. G., Lee, Y., Hur, H. G., Lim, Y., & Ahn, J. H. (2006). Production of three O-methylated esculetins with Escherichia coli expressing O-methyltransferase from poplar. Bioscience, Biotechnology and Biochemistry, 70, 1269–1272.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kiranmayee Rao
    • 1
    Email author
  • Bhuvaneswari Chodisetti
    • 1
  • Suryakala Gandi
    • 2
  • Archana Giri
    • 2
  • P. B. Kavi Kishor
    • 1
  1. 1.Department of Genetics, Faculty of ScienceOsmania UniversityHyderabadIndia
  2. 2.Centre for BiotechnologyJawaharlal Nehru Technological University HyderabadHyderabadIndia

Personalised recommendations