Applied Biochemistry and Biotechnology

, Volume 180, Issue 4, pp 655–667 | Cite as

Highly Efficient and Rapid Detection of the Cleavage Activity of Cas9/gRNA via a Fluorescent Reporter

  • Yi Yang
  • Songcai Liu
  • Yunyun Cheng
  • Linyan Nie
  • Chen Lv
  • Gang Wang
  • Yu Zhang
  • Linlin HaoEmail author


The RNA-guided endonuclease clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) derived from CRISPR systems is a simple and efficient genome-editing technology applied to various cell types and organisms. So far, the extensive approach to detect the cleavage activity of customized Cas9/guide RNA (gRNA) is T7 endonuclease I (T7EI) assay, which is time and labor consuming. In this study, we developed a visualized fluorescent reporter system to detect the specificity and cleavage activity of gRNA. Two gRNAs were designed to target porcine immunoglobulin M and nephrosis 1 genes. The cleavage activity was measured by using the traditional homology-directed repair (HDR)-based fluorescent reporter and the single-strand annealing (SSA)-based fluorescent reporter we established in this study. Compared with the HDR assay, the SSA-based fluorescent reporter approach was a more efficient and dependable strategy for testing the cleavage activity of Cas9/gRNA, thereby providing a universal and efficient approach for the application of CRISPR/Cas9 in generating gene-modified cells and organisms.


Cas9/gRNA SSA reporter assay HR reporter assay T7EI 



This work was supported by the National Natural Science Foundation of China (31101781, 31072102) and the Programs Foundation of Ministry of Education of China (20110061110081).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Beumer, K. J., et al. (2008). Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 19821–6.CrossRefGoogle Scholar
  2. 2.
    Geurts, A. M., et al. (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 325(5939), 433.CrossRefGoogle Scholar
  3. 3.
    Joung, J. K., & Sander, J. D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14(1), 49–55.CrossRefGoogle Scholar
  4. 4.
    Miller, J. C., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2), 143–8.CrossRefGoogle Scholar
  5. 5.
    Li, D., et al. (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 31(8), 681–3.CrossRefGoogle Scholar
  6. 6.
    Li, W., et al. (2013). Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 31(8), 684–6.CrossRefGoogle Scholar
  7. 7.
    Jinek, M., et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–21.CrossRefGoogle Scholar
  8. 8.
    Mali, P., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–6.CrossRefGoogle Scholar
  9. 9.
    Ran, F. A., et al. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–308.CrossRefGoogle Scholar
  10. 10.
    Wang, H., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–8.CrossRefGoogle Scholar
  11. 11.
    Chang, N., et al. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Research, 23(4), 465–72.CrossRefGoogle Scholar
  12. 12.
    Jao, L. E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13904–9.CrossRefGoogle Scholar
  13. 13.
    Hwang, W. Y., et al. (2013). Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PloS One, 8(7), e68708.CrossRefGoogle Scholar
  14. 14.
    Yang, D., et al. (2014). Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. Journal of Molecular Cell Biology, 6(1), 97–9.CrossRefGoogle Scholar
  15. 15.
    Yan, Q., et al. (2014). Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen (Lond), 3(1), 12.CrossRefGoogle Scholar
  16. 16.
    Niu, Y., et al. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4), 836–43.CrossRefGoogle Scholar
  17. 17.
    Friedland, A. E., et al. (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods, 10(8), 741–3.CrossRefGoogle Scholar
  18. 18.
    Xie, K., & Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 6(6), 1975–83.CrossRefGoogle Scholar
  19. 19.
    Kim, H. J., et al. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research, 19(7), 1279–88.CrossRefGoogle Scholar
  20. 20.
    Kim, H., et al. (2011). Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nature Methods, 8(11), 941–3.CrossRefGoogle Scholar
  21. 21.
    Wilson, K. A., Chateau, M. L., & Porteus, M. H. (2013). Design and development of artificial zinc finger transcription factors and zinc finger nucleases to the hTERT Locus. Molecular Therapy Nucleic Acids, 2, e87.CrossRefGoogle Scholar
  22. 22.
    Rouet, P., Smih, F., & Jasin, M. (1994). Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 91(13), 6064–8.CrossRefGoogle Scholar
  23. 23.
    Garcia Civera, R., et al. (1980). Retrograde P wave polarity in reciprocating tachycardia utilizing lateral bypass tracts. European Heart Journal, 1(2), 137–45.Google Scholar
  24. 24.
    Segal, D. J., & Carroll, D. (1995). Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 92(3), 806–10.CrossRefGoogle Scholar
  25. 25.
    Mali, P., Esvelt, K. M., & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature Methods, 10(10), 957–63.CrossRefGoogle Scholar
  26. 26.
    Fu, Y., et al. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32(3), 279–84.CrossRefGoogle Scholar
  27. 27.
    Liu, Y., et al. (2014). A modified TALEN-based strategy for rapidly and efficiently generating knockout mice for kidney development studies. PloS One, 9(1), e84893.CrossRefGoogle Scholar
  28. 28.
    Zhou, Y., et al. (2016) Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci.Google Scholar
  29. 29.
    Zou, J., et al. (2009). Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell, 5(1), 97–110.CrossRefGoogle Scholar
  30. 30.
    Xiao, A., et al. (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yi Yang
    • 1
  • Songcai Liu
    • 1
  • Yunyun Cheng
    • 1
  • Linyan Nie
    • 1
  • Chen Lv
    • 1
  • Gang Wang
    • 1
  • Yu Zhang
    • 1
  • Linlin Hao
    • 1
    Email author
  1. 1.College of Animal ScienceJilin UniversityChangchunChina

Personalised recommendations