Applied Biochemistry and Biotechnology

, Volume 180, Issue 3, pp 383–399 | Cite as

Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant

  • Rupshikha Patowary
  • Kaustuvmani Patowary
  • Mohan Chandra Kalita
  • Suresh DekaEmail author


The present study aimed at isolating rhamnolipid biosurfactant-producing bacteria that could utilize paneer whey, an abundant waste source as sole medium for the production purpose. Pseudomonas aeruginosa strain, SR17, was isolated from hydrocarbon-contaminated soil that could efficiently utilize paneer whey for rhamnolipid production and reduce surface tension of the medium from 52 to 26.5 mN/m. The yield of biosurfactant obtained was 2.7 g/l, upgraded to 4.8 g/l when supplemented with 2 % glucose and mineral salts. Biochemical, FTIR, and LC-MS analysis revealed that extracted biosurfactant is a combination of both mono and di-rhamnolipid congeners. The critical micelle concentration (CMC) was measured to be 110 mg/l. Emulsification activity of the biosurfactant against n-hexadecane, olive oil, kerosene, diesel oil, engine oil, and crude oil were found to be 83, 88, 81, 92, 86, and 100 %, respectively. The rhamnolipid was detected to be non-toxic against mouse fibroblastic cell line L292.


Rhamnolipid Pseudomonas aeruginosa SR17 Paneer whey Critical micelle concentration Emulsification Non-toxic 



The authors express their gratitude to the Director of Institute of Advanced Study in Science and Technology, Guwahati, India, for providing laboratory facilities to carry out the research work. Rupshikha Patowary is thankful to the Department of Biotechnology, Govt. of India for providing assistance and support as a Junior Research Fellow (JRF) to carry out the research work under a project sanction to the corresponding author vide letter no. BT/PR7491/BCE/8/943/2012 dated 06/09/2013.

Supplementary material

12010_2016_2105_MOESM1_ESM.docx (100 kb)
ESM 1 Fourier transform infrared spectroscopy (FTIR) graph in attenuated total reflectance (ATR) mode showing functional groups present in biosurfactant produced by P. aeruginosa SR17. (DOCX 99 kb)
12010_2016_2105_MOESM2_ESM.docx (16 kb)
ESM 2 Statistical analysis and ANOVA table for determination of the significance of surface tension reduction (DOCX 15 kb)
12010_2016_2105_MOESM3_ESM.docx (41 kb)
ESM 3 (a), (b), and (c) represents positive ion mode ESI-MS recorded from the biosurfactant produced by P. aeruginosa SR17. (DOCX 41 kb)


  1. 1.
    Bustamante, M., Durán, N., & Diez, M. C. (2012). Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of Soil Science and Plant Nutrition, 12, 667–687.Google Scholar
  2. 2.
    George, S., & Jayachandran, K. (2012). Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. Journal of Applied Microbiology, 114, 373–383.CrossRefGoogle Scholar
  3. 3.
    Gautam, K. K., & Tyagi, V. K. (2006). Microbial surfactants: a review. Journal of Oleo Science, 55, 155–166.CrossRefGoogle Scholar
  4. 4.
    Anandaraj, B., & Thivakaran, P. (2010). Isolation and production of biosurfactant producing organism from oil spilled soil. Journal of Bioscience and Technology, 1, 120–126.Google Scholar
  5. 5.
    Costa, S. G. V. A. O., Nitschke, M., Lepine, F., Deziel, E., & Contiero, J. (2010). Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochemistry, 45, 1511–1516.CrossRefGoogle Scholar
  6. 6.
    Batista, R. M., Rufino, R. D., Luna, J. M., Souza, J. E. G., & Sarubbo, L. A. (2010). Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environment Research, 82, 418–425.CrossRefGoogle Scholar
  7. 7.
    Gusmão, C. A. B., Rufino, R. D., & Sarubbo, L. A. (2010). Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World Journal of Microbiology and Biotechnology, 26, 1683–1692.CrossRefGoogle Scholar
  8. 8.
    Adelzadeh, M. R., Roostazad, R., Kamali, M. R., & Bagheri Lotfabad, T. (2009). A technical feasibility analysis to apply Pseudomonas aeroginosa MR01 biosurfactant in microbial enhanced oil recovery of low-permeability carbonate reservoirs of Iran. Transactions C: Chemistry and Chemical Engineering, 17(1), 46–54.Google Scholar
  9. 9.
    Borah, D., & Yadav, R. N. S. (2016). Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain. Egyptian Journal of Petroleum. doi: 10.1016/j.ejpe.2016.02.005.Google Scholar
  10. 10.
    Parry, A.J., Parry, N.J., Peilow, C., & Stevenson, P.S. (2013). Combinations of rhamnolipids and enzymes for improved cleaning. Patent no. EP 2596087 A1.Google Scholar
  11. 11.
    Magalhaes, L., & Nitschke, M. (2013). Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control, 29, 138–142.CrossRefGoogle Scholar
  12. 12.
    Sachdev, D. P., & Cameotra, S. S. (2013). Biosurfactants in agriculture. Applied Microbiology and Biotechnology, 97, 1005–1016.CrossRefGoogle Scholar
  13. 13.
    Randhawa, K. K. S., & Rahman, P. K. S. M. (2014). Rhamnolipid biosurfactants—past, present, and future scenario of global market. Frontiers in Microbiology, 5, 454. doi: 10.3389/fmicb.2014.00454.Google Scholar
  14. 14.
    Mukherjee, S., Das, P., & Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology, 24, 509–515.CrossRefGoogle Scholar
  15. 15.
    Cameotra, S. S., & Makkar, R. S. (1998). Synthesis of biosurfactants in extreme conditions. Applied Microbiology and Biotechnology, 50, 520–529.CrossRefGoogle Scholar
  16. 16.
    Rashedi, H., Mazaheri Assadi, M., Bonakdarpour, B., & Jamshidi, E. (2005). Environmental importance of rhamnolipid production from molasses as a carbon source. International Journal of Environmental Science & Technology , 2, 59–62.Google Scholar
  17. 17.
    Bharadwaj, G., Cameotra, S. S., & Chopra, H. K. (2015). Utilization of oil industry residues for the production of rhamnolipids by Pseudomonas indica. Journal of Surfactants and Detergents. doi: 10.1007/s11743-015-1711-9.Google Scholar
  18. 18.
    Rashedi, H., Mazaheri Assadi, M., Bonakdarpour, B., & Jamshidi, E. (2006). Production of rhamnolipids by Pseudomonas aeruginosa growing on carbon sources. International Journal of Environmental Science & Technology , 3, 297–303.Google Scholar
  19. 19.
    Thaniyavarn, J., Chongchin, A., Wanitsuksombut, N., Thaniyavarn, S., Pinphanichakarn, P., Leepipatpiboon, N., Morikawa, M., & Kanaya, S. J. (2006). Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. Journal of General and Applied Microbiology, 52(4), 215–22.CrossRefGoogle Scholar
  20. 20.
    George, S., & Jayachandran, K. (2008). Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Applied Biochemistry and Biotechnology, 158, 694–705.CrossRefGoogle Scholar
  21. 21.
    Dubey, K., & Juwarkar, A. (2001). Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World Journal of Microbiology and Biotechnology , 17, 61–69.CrossRefGoogle Scholar
  22. 22.
    Partovi, M., Bagheri Lotfabad, T., Roostaazad, R., Bahmaei, M., & Tayyebi, S. (2013). Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. World Journal of Microbiology and Biotechnology, 29, 1039–1047. doi: 10.1007/s11274-013-1267-7.CrossRefGoogle Scholar
  23. 23.
    Goyal, N., & Gandhi, D. N. (2009). Comparative analysis of Indian paneer and cheese whey for electrolyte whey drink. World Journal of Dairy & Food Sciences, 4, 70–72.Google Scholar
  24. 24.
    Daverey, A., Pakshirajan, K., & Sangeetha, P. (2009). Sophorolipids production by Candida bombicola using synthetic dairy wastewater. International Journal Environmental Science and Engineering, 1, 173–175.Google Scholar
  25. 25.
    Bonilla, M., Olivaro, C., Corona, M., Vazquez, A., et al. (2005). Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. Journal of Applied Microbiology, 98, 456–463.CrossRefGoogle Scholar
  26. 26.
    Chandrasekaran, E. V., & Bemiller, J. N. (1980). Constituent analyses of glycosaminoglycans. In R. L. Wrhiste & M. L. Wolform (Eds.), Methods in carbohydrate chemistry (pp. 89–96). New York: Academic.Google Scholar
  27. 27.
    Cappuccino, J. G., & Sherman, N. (1999). Microbiology—a laboratory manual (5th ed.). Menlo Park: Benjamin-Cummings.Google Scholar
  28. 28.
    Palleroni, N. J. (1984). Pseudomonadaceae. In N. R. Krieg & J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (pp. 140–218). Baltimore: Williams and Wilkins.Google Scholar
  29. 29.
    White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: a guide to methods and applications (pp. 315–322). New York: Academic.Google Scholar
  30. 30.
    Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53, 224–229.Google Scholar
  31. 31.
    Kalita, S., Devi, B., Kandimalla, R., Sharma, K. K., Sharma, A., Kalita, K., et al. (2015). Chloramphenicol encapsulated in poly-ε- caprolactone–pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds. International Journal of Nanomedicine, 10, 2971–2984.Google Scholar
  32. 32.
    Jaroszuk, M. O., Jaszek, M., Dudka, M. M., Blachowicz, A., Rejczak, T. P., Janusz, G., et al. (2014). Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BioMed Research International. doi: 10.1155/2014/743812.Google Scholar
  33. 33.
    Haba, E., Espuny, M. J., Busquets, M., & Manresa, A. (2000). Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 88, 379–387.CrossRefGoogle Scholar
  34. 34.
    Moussa, T. A. A., Mohamed, M. S., & Samak, N. (2014). Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Brazilian Journal of Chemical Engineering, 31, 867–880.CrossRefGoogle Scholar
  35. 35.
    Rouse, J. D., Sabatini, D. A., Suflita, J. M., & Harwell, J. H. (1994). Influence of surfactants on microbial degradation of organic compounds. Critical Reviews in Environmental Science and Technology, 24, 325–370.CrossRefGoogle Scholar
  36. 36.
    Kamil, M., & Siddiqui, H. (2013). Experimental study of surface and solution properties of gemini-conventional surfactant mixtures on solubilization of polycyclic aromatic hydrocarbon. Modeling and Numerical Simulation of Material Science, 3, 17–25.CrossRefGoogle Scholar
  37. 37.
    Pornsunthorntawee, O., Arttaweeporna, N., Paisanjit, S., Somboonthanatea, P., et al. (2008). Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant enhanced oil recovery. Biochemical Engineering Journal, 42, 172–179.CrossRefGoogle Scholar
  38. 38.
    Pornsunthorntaweea, O., Chavadej, S., & Rujiravanit, R. (2009). Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloids and Surfaces B: Biointerfaces, 72, 6–15.CrossRefGoogle Scholar
  39. 39.
    Heyd, M., Kohnert, A., Tan, T. H., Nusser, M., et al. (2008). Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Analytical and Bioanalytical Chemistry, 391, 1579–1590.CrossRefGoogle Scholar
  40. 40.
    Abdel-Mawgoud, A. M., Lépine, F., & Déziel, E. (2010). Rhamnolipids: diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 86, 1323–1336.CrossRefGoogle Scholar
  41. 41.
    Pantazaki, A. A., Papaneophytou, C. P., & Lambropoulou, D. A. (2011). Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express, 1(17), 1–13.Google Scholar
  42. 42.
    Pereira, J. F. B., Gudina, E. J., Doria, M. L., Domingues, M. R., Rodrigues, L. R., Teixeira, J. A., & Coutinho, J. A. P. (2012). Characterization by electrospray ionization and tandem mass spectrometry of rhamnolipids produced by two Pseudomonas aeruginosa strains isolated from Brazilian crude oil. European Journal of Mass Spectrometry, 18, 399–406.CrossRefGoogle Scholar
  43. 43.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., et al. (2013). MEGA 6: Molecular Evolutionary Genetic Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  44. 44.
    Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2010). Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Applied Biochemistry and Biotechnology, 160, 2066–2074.CrossRefGoogle Scholar
  45. 45.
    Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Abdel-Halee Hassouna, N. (2009). Applied Biochemistry and Biotechnology, 57, 329–345.CrossRefGoogle Scholar
  46. 46.
    ISO 10993–5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, 2009.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rupshikha Patowary
    • 1
  • Kaustuvmani Patowary
    • 1
  • Mohan Chandra Kalita
    • 2
  • Suresh Deka
    • 1
    Email author
  1. 1.Environmental Biotechnology Laboratory, Life Sciences DivisionInstitute of Advanced Study in Science & Technology (IASST)GuwahatiIndia
  2. 2.Department of BiotechnologyGauhati UniversityGuwahatiIndia

Personalised recommendations