Advertisement

Applied Biochemistry and Biotechnology

, Volume 180, Issue 1, pp 109–121 | Cite as

Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE)

  • Neha Arora
  • Alok Patel
  • Parul A. Pruthi
  • Vikas PruthiEmail author
Article

Abstract

This investigation utilized sugarcane bagasse aqueous extract (SBAE), a nontoxic, cost-effective medium to boost triacylglycerol (TAG) accumulation in novel fresh water microalgal isolate Scenedesmus sp. IITRIND2. Maximum lipid productivity of 112 ± 5.2 mg/L/day was recorded in microalgae grown in SBAE compared to modified BBM (26 ± 3 %). Carotenoid to chlorophyll ratio was 12.5 ± 2 % higher than in photoautotrophic control, indicating an increase in photosystem II activity, thereby increasing growth rate. Fatty acid methyl ester (FAME) profile revealed presence of C14:0 (2.29 %), C16:0 (15.99 %), C16:2 (4.05 %), C18:0 (3.41 %), C18:1 (41.55 %), C18:2 (12.41), and C20:0 (1.21 %) as the major fatty acids. Cetane number (64.03), cold filter plugging property (−1.05 °C), and oxidative stability (12.03 h) indicated quality biodiesel abiding by ASTM D6751 and EN 14214 fuel standards. Results consolidate the candidature of novel freshwater microalgal isolate Scenedesmus sp. IITRIND2 cultivated in SBAE, aqueous extract made from copious, agricultural waste sugarcane bagasse to increase the lipid productivity, and could further be utilized for cost-effective biodiesel production.

Keywords

Scenedesmus sp. IITRIND2 Sugarcane bagasse Triacylglycerol Biodiesel Lipid productivity 

Supplementary material

12010_2016_2086_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20 kb)

References

  1. 1.
    Tripathi, R., Singh, J., & Thakur, I. S. (2015). Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production. Renewable Energy, 74, 774–781. doi: 10.1016/j.renene.2014.09.005.CrossRefGoogle Scholar
  2. 2.
    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  3. 3.
    Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467. doi: 10.1016/j.apenergy.2012.10.004.CrossRefGoogle Scholar
  4. 4.
    Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431. doi: 10.1016/j.apenergy.2010.12.064.CrossRefGoogle Scholar
  5. 5.
    Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4), 499–507. doi: 10.1016/j.jbiotec.2006.05.002.CrossRefGoogle Scholar
  6. 6.
    Gao, C., Zhai, Y., Ding, Y., & Wu, Q. (2010). Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 87(3), 756–761. doi: 10.1016/j.apenergy.2009.09.006.CrossRefGoogle Scholar
  7. 7.
    Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. doi: 10.1016/j.pecs.2012.03.002.CrossRefGoogle Scholar
  8. 8.
    Cerón-García, M. C., Macías-Sánchez, M. D., Sánchez-Mirón, A., García-Camacho, F., & Molina-Grima, E. (2013). A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Applied Energy, 103, 341–349.CrossRefGoogle Scholar
  9. 9.
    Park, W.-K., Moon, M., Kwak, M.-S., Jeon, S., Choi, G.-G., Yang, J.-W., & Lee, B. (2014). Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Bioresource Technology, 171, 343–9. doi: 10.1016/j.biortech.2014.08.109.CrossRefGoogle Scholar
  10. 10.
    Mu, J., Li, S., Chen, D., Xu, H., Han, F., Feng, B., & Li, Y. (2015). Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Bioresource Technology, 185, 99–105. doi: 10.1016/j.biortech.2015.02.082.CrossRefGoogle Scholar
  11. 11.
    Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25. doi: 10.1016/j.biortech.2010.06.035.CrossRefGoogle Scholar
  12. 12.
    Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868. doi: 10.1016/j.apenergy.2012.10.067.CrossRefGoogle Scholar
  13. 13.
    Lee, Y., Iyer, P. & Torget, R. (1999). Dilute-acid hydrolysis of lignocellulosic biomass. In: Tsao, G., Brainard, A., Bungay, H., Cao, N., Cen, P., Chen, Z., Du, J., Foody, B., Gong, C., Hall, P., Ho, N., Irwin, D., Iyer, P., Jeffries, T., Ladisch, C., Ladisch, M., Lee, Y., Mosier, N., Mühlemann, H., Sedlak, M., Shi, N., Tolan, J., Torget, R., Wilson, D., Xia, L. (Eds.), Recent Progress in Bioconversion of Lignocellulosics, vol. 65. Springer, Berlin, Heidelberg, pp. 93–115.Google Scholar
  14. 14.
    Sidana, A., & Farooq, U. (2014). Sugarcane bagasse: a potential medium for fungal cultures. Chinese Journal of Biology, 2014, 1–5. doi: 10.1155/2014/840505.CrossRefGoogle Scholar
  15. 15.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  16. 16.
    Dubois, M., Gilles, K. A., Ton, J. K. H., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. doi: 10.1021/ac60111a017.CrossRefGoogle Scholar
  17. 17.
    Patel, A., Sindhu, D. K., Arora, N., Singh, R. P., Pruthi, V., & Pruthi, P. A. (2015). Biodiesel production from Non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresource Technology, 197, 97–98. doi: 10.1016/j.biortech.2015.08.039.CrossRefGoogle Scholar
  18. 18.
    Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2016). Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, Article in Press. doi: 10.1016/j.biortech.2016.02.112
  19. 19.
    Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. doi: 10.1016/0076-6879(87)48036-1.CrossRefGoogle Scholar
  20. 20.
    Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146–154. doi: 10.1016/j.biortech.2014.01.025.CrossRefGoogle Scholar
  21. 21.
    Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532–1553. doi: 10.3390/en5051532.CrossRefGoogle Scholar
  22. 22.
    Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., & Qiu, G. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), 835–44. 10.1007/s00253-011-3399-8.CrossRefGoogle Scholar
  23. 23.
    Li, T., Zheng, Y., Yu, L., & Chen, S. (2014). Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy, 66, 204–213. doi: 10.1016/j.biombioe.2014.04.010.CrossRefGoogle Scholar
  24. 24.
    Lu, Y., Zhai, Y., Liu, M., & Wu, Q. (2010). Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. Journal of Applied Phycology, 22(5), 573–578. doi: 10.1007/s10811-009-9496-8.CrossRefGoogle Scholar
  25. 25.
    Zhao, G., Yu, J., Jiang, F., Zhang, X., & Tan, T. (2012). The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresource Technology, 114, 466–471. doi: 10.1016/j.biortech.2012.02.129.CrossRefGoogle Scholar
  26. 26.
    Rattanapoltee, P., & Kaewkannetra, P. (2014). Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Applied Biochemistry and Biotechnology, 173(6), 1495–510. doi: 10.1007/s12010-014-0949-4.CrossRefGoogle Scholar
  27. 27.
    Yang, S., Liu, G., Meng, Y., Wang, P., Zhou, S., & Shang, H. (2014). Utilization of xylose as a carbon source for mixotrophic growth of Scenedesmus obliquus. Bioresource Technology, 172, 180–5. doi: 10.1016/j.biortech.2014.08.122.CrossRefGoogle Scholar
  28. 28.
    Heredia-Arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35(5), 2245–2253.CrossRefGoogle Scholar
  29. 29.
    Yamane, Y., Utsunomiya, T., Watanabe, M., & Sasaki, K. (2001). Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnology Letters, 23(15), 1223–1228. doi: 10.1023/A:1010573218863.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Neha Arora
    • 1
  • Alok Patel
    • 1
  • Parul A. Pruthi
    • 1
  • Vikas Pruthi
    • 1
    Email author
  1. 1.Molecular Microbiology Laboratory, Biotechnology DepartmentIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations