Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1381–1392 | Cite as

Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain

  • Yuping Ma
  • Xiaoyu Wang
  • Xueling Nie
  • Zhan Zhang
  • Zongcan Yang
  • Cong Nie
  • Hongzhi TangEmail author


In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.


Degradation Chlorogenic acid Intermediate metabolites Sphingomonas sp. 



This work was supported in part by grants from the Chinese National Science Foundation for Excellent Young Scholars (31422004), the Chinese National Natural Science Foundation (31270154).


  1. 1.
    Whiting, G. C., & Carr, J. G. (1957). Chlorogenic acid metabolism in cider fermentation. Nature, 180, 1479–1479.CrossRefGoogle Scholar
  2. 2.
    Plumb, G. W., Garcia-Conesa, M. T., Kroon, P. A., Rhodes, M., Ridley, S., & Williamson, G. (1999). Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. Journal of the Science of Food and Agriculture, 79, 390–392.CrossRefGoogle Scholar
  3. 3.
    Morton, L. W., Caccetta, R. A.-A., Puddey, I. B., & Croft, K. D. (2000). Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clinical and Experimental Pharmacol and Physiology, 27, 152–159.CrossRefGoogle Scholar
  4. 4.
    Chu, Y.-F., Chen, Y., Black, R. M., Brown, P. H., Lyle, B. J., Liu, R. H., & Ou, B. (2011). Type 2 diabetes-related bioactivities of coffee: assessment of antioxidant activity, NF-κB inhibition, and stimulation of glucose uptake. Food Chemistry, 124, 914–920.CrossRefGoogle Scholar
  5. 5.
    Pietraforte, D., Castelli, M., Metere, A., Scorza, G., Samoggia, P., Menditto, A., & Minetti, M. (2006). Salivary uric acid at the acidic pH of the stomach is the principal defense against nitrite-derived reactive species: sparing effects of chlorogenic acid and serum albumin. Free Radical Biology and Medicine, 41, 1753–1763.CrossRefGoogle Scholar
  6. 6.
    Van Dam, R. M., & Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA, 294, 97–104.CrossRefGoogle Scholar
  7. 7.
    Huang, M.-T., Smart, R. C., Wong, C.-Q., & Conney, A. H. (1988). Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Research, 48, 5941–5946.Google Scholar
  8. 8.
    Feng, R., Lu, Y., Bowman, L. L., Qian, Y., Castranova, V., & Ding, M. (2005). Inhibition of activator protein-1, NF-κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. Journal of Biological Chemistry, 280, 27888–27895.CrossRefGoogle Scholar
  9. 9.
    Kasai, H., Fukada, S., Yamaizumi, Z., Sugie, S., & Mori, H. (2000). Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food and Chemical Toxicology, 38, 467–471.CrossRefGoogle Scholar
  10. 10.
    Chlopčíková, Š., Psotová, J., Miketová, P., Soušek, J., Lichnovský, V., & Šimánek, V. (2004). Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes part II. caffeic, chlorogenic and rosmarinic acids. Phytotherapy Research, 18, 408–413.CrossRefGoogle Scholar
  11. 11.
    Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333.CrossRefGoogle Scholar
  12. 12.
    Azuma, K., Ippoushi, K., Nakayama, M., Ito, H., Higashio, H., & Terao, J. (2000). Absorption of chlorogenic acid and caffeic acid in rats after oral administration. Journal of Agricultural and Food Chemistry, 48, 5496–5500.CrossRefGoogle Scholar
  13. 13.
    Olthof, M. R., Hollman, P. C. H., Buijsman, M. N. C. P., Van Amelsvoort, J. M. M., & Katan, M. B. (2003). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans.  The Journal of Nutrition, 133, 1806–1814.Google Scholar
  14. 14.
    Gonthier, M. P., Remesy, C., Scalbert, A., Cheynier, V., Souquet, J. M., Poutanen, K., & Aura, A. M. (2006). Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomedicine and Pharmacotherapy, 60, 536–540.CrossRefGoogle Scholar
  15. 15.
    Farrell, T. L., Dew, T. P., Poquet, L., Hanson, P., & Williamson, G. (2011). Absorption and metabolism of chlorogenic acids in cultured gastric epithelial monolayers. Drug Metabolism and Disposition, 39, 2338–2346.CrossRefGoogle Scholar
  16. 16.
    Couteau, D., Mccartney, A. L., Gibson, G. R., Williamson, G., & Faulds, C. B. (2001). Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. Journal of Applied Microbiology, 90, 873–881.CrossRefGoogle Scholar
  17. 17.
    Peppercorn, M. A., & Goldman, P. (1971). Caffeic acid metabolism by bacteria of the human gastrointestinal tract. Journal of Bacteriology, 108, 996–1000.Google Scholar
  18. 18.
    Tomas-Barberan, F., García-Villalba, R., Quartieri, A., Raimondi, S., Amaretti, A., Leonardi, A., & Rossi, M. (2014). In vitro transformation of chlorogenic acid by human gut microbiota. Molecular Nutrition & Food Research, 58, 1122–1131.CrossRefGoogle Scholar
  19. 19.
    Parkar, S. G., Trower, T. M., & Stevenson, D. E. (2013). Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe, 23, 12–19.CrossRefGoogle Scholar
  20. 20.
    Raimondi, S., Anighoro, A., Quartieri, A., Amaretti, A., Tomás-Barberán, F. A., Rastelli, G., & Rossi, M. (2015). Role of bifidobacteria in the hydrolysis of chlorogenic acid. MicrobiologyOpen, 4, 41–52.CrossRefGoogle Scholar
  21. 21.
    Stolz, A. (2008). Molecular characteristics of xenobiotic-degrading sphingomonads. Applied Microbiology and Biotechnology, 81, 793–811.CrossRefGoogle Scholar
  22. 22.
    White, D. C., Sutton, S. D., & Ringelberg, D. B. (1996). The genus Sphingomonas: physiology and ecology. Current Opinion in Biotechnology, 7, 301–306.CrossRefGoogle Scholar
  23. 23.
    Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76, M398–M403.CrossRefGoogle Scholar
  24. 24.
    Karunanidhi, A., Thomas, R., Van Belkum, A., & Neela, V. (2013). In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. BioMed Research International, 2013, 7.CrossRefGoogle Scholar
  25. 25.
    Gauthier, L., Bonnin-Verdal, M.-N., Marchegay, G., Pinson-Gadais, L., Ducos, C., Richard-Forget, F., & Atanasova-Penichon, V. (2016). Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: new insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. International Journal of Food Microbiology, 221, 61–68.CrossRefGoogle Scholar
  26. 26.
    Ludwig, I. A., Paz De Peña, M., Concepción, C., & Alan, C. (2013). Catabolism of coffee chlorogenic acids by human colonic microbiota. BioFactors, 39, 623–632.CrossRefGoogle Scholar
  27. 27.
    Sánchez‐Maldonado, A., Schieber, A., & Gänzle, M. (2011). Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology, 111, 1176–1184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yuping Ma
    • 1
  • Xiaoyu Wang
    • 2
  • Xueling Nie
    • 2
  • Zhan Zhang
    • 1
  • Zongcan Yang
    • 1
  • Cong Nie
    • 1
  • Hongzhi Tang
    • 2
    Email author
  1. 1.China Tobacco Henan Industrial Co. LtdZhengzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations