Applied Biochemistry and Biotechnology

, Volume 178, Issue 6, pp 1095–1112 | Cite as

Antioxidant Properties of Fish Protein Hydrolysates Prepared from Cod Protein Hydrolysate by Bacillus sp.

  • I. Godinho
  • C. Pires
  • S. Pedro
  • B. Teixeira
  • R. Mendes
  • M. L. Nunes
  • I. Batista


Fermentative protein hydrolysates (FPH) were prepared with a proteolytic bacterium, Bacillus strain exhibiting high proteolytic activity. Three FPH with 1, 2, and 4 % of cod protein hydrolysate (CPH) and 0.5 % of yeast extract in the culture were prepared. The yields achieved varied between 30 and 58 % based on protein content. A general decrease of leucine, isoleucine, valine, alanine, arginine, threonine, proline, and glutamic acid was observed. All FPHs showed higher reducing power and DPPH radical scavenging activity than CPH, but similar ABTS radical scavenging activity. However, FPHs exhibited lower Cu+2-chelating activity than CPH. The ACE inhibitory activity of FPHs was not improved relatively to that recorded in CPH. The fermentative process seems to have potential to obtaining hydrolysates with improved biological activities or even to produce protein hydrolysates from native fish proteins.


Fish protein hydrolysates Bacillus sp. Fermentative process Antioxidant properties 



Bárbara Teixeira acknowledges the project SECUREFISH - “Improving Food Security by Reducing Post Harvest Losses in the Fisheries Sector” FP 7 EU PROJECT THEME: KBBE.2011.2.5-02 (Grant agreement No 289282) for supporting her grant.


  1. 1.
    Agyei, D., & Danquah, M. K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 29, 272–277.CrossRefGoogle Scholar
  2. 2.
    Venugopal, V. (1994). In fisheries processing: biotechnological applications., (Martin, A. M., ed.), Chapman & Hall,, London, UK, pp. 223-243.Google Scholar
  3. 3.
    Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16, 945–960.CrossRefGoogle Scholar
  4. 4.
    Martínez-Alvarez, O., Guimas, L., Delannoy, C., & Fouchereau-Peron, M. (2008). Use of a commercial protease and yeasts to obtain CGRP-like molecules from saithe protein. Journal of Agricultural and Food Chemistry, 56, 7853–7859.CrossRefGoogle Scholar
  5. 5.
    Balakrishnan, B., Prasad, B., Rai, A., Velappan, S., Subbanna, M., & Narayan, B. (2011). In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods. Biodegradation, 22, 287–295.CrossRefGoogle Scholar
  6. 6.
    Fakhfakh, N., Ktari, N., Siala, R., & Nasri, M. (2013). Wool-waste valorization: production of protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic bacterium, Bacillus pumilus A1. Journal of Applied Microbiology, 115, 424–433.CrossRefGoogle Scholar
  7. 7.
    Torino, M. I., Limón, R. I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C., & Frias, J. (2013). Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 136, 1030–1037.CrossRefGoogle Scholar
  8. 8.
    Jemil, I., Jridi, M., Nasri, R., Ktari, N., Ben Slama-Ben Salem, R., Mehiri, M., Hajji, M., & Nasri, M. (2014). Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49, 963–972.CrossRefGoogle Scholar
  9. 9.
    Twining, S. S. (1984). Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Analytical Biochemistry, 143, 30–34.CrossRefGoogle Scholar
  10. 10.
    Saint-Denis, T., & Goupy, J. (2004). Optimization of a nitrogen analyser based on the Dumas method. Analytica Chimica Acta, 515, 191–198.CrossRefGoogle Scholar
  11. 11.
    AOAC. (1998). Amino acids in feeds - AOAC official method 994.12 (16th ed.). Washington, DC: Association of Official Analytical Chemistry.Google Scholar
  12. 12.
    AOAC. (1998). Tryptophan in foods and food and feed ingredients - AOAC official method 988.15 (16th ed.). Washington, DC: Association of Official Analytical Chemistry.Google Scholar
  13. 13.
    Henderson, J. W., Ricker, R. D., Bidlingmeyer, B. A., & Woodward, C. (2000). Rapid, accurate, sensitive and reproducible analysis of amino acids. Palo Alto: Agilent Technologies.Google Scholar
  14. 14.
    Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66, 642–646.CrossRefGoogle Scholar
  15. 15.
    Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40, 945–948.CrossRefGoogle Scholar
  16. 16.
    Picot, L., Ravallec, R., Fouchereau-Péron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Guérard, F., Chabeaud, A., LeGal, Y., Alvarez, O. M., Bergé, J.-P., Piot, J.-M., Batista, I., Pires, C., Thorkelsson, G., Delannoy, C., Jakobsen, G., Johansson, I., & Bourseau, P. (2010). Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. Journal of the Science of Food and Agriculture, 90, 1819–1826.Google Scholar
  17. 17.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.CrossRefGoogle Scholar
  18. 18.
    Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35, 771–775.CrossRefGoogle Scholar
  19. 19.
    Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51, 3661–3667.CrossRefGoogle Scholar
  20. 20.
    Torres-Fuentes, C., Alaiz, M., & Vioque, J. (2011). Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chemistry, 129, 485–490.CrossRefGoogle Scholar
  21. 21.
    Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38, 674–677.CrossRefGoogle Scholar
  22. 22.
    Geirsdottir, M., Sigurgisladottir, S., Hamaguchi, P. Y., Thorkelsson, G., Johannsson, R., Kristinsson, H. G., & Kristjansson, M. M. (2011). Enzymatic hydrolysis of blue whiting (Micromesistius poutassou); functional and bioactive properties. Journal of Food Science, 76, C14–C20.CrossRefGoogle Scholar
  23. 23.
    Souissi, N., Ellouz-Triki, Y., Bougatef, A., Blibech, M., & Nasri, M. (2008). Preparation and use of media for protease-producing bacterial strains based on by-products from cuttlefish (Sepia officinalis) and wastewaters from marine-products processing factories. Microbiological Research, 163, 473–480.CrossRefGoogle Scholar
  24. 24.
    Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews, 41, 711–753.Google Scholar
  25. 25.
    Razak, C. N. A., Tang, S. W., Basri, M., & Salleh, A. B. (1997). Preliminary study on the production of extracellular protease from a newly isolated Bacillus sp. (No.1) and the physical factors affecting its production. Pertanika Journal of Science & Technology, 5, 169–177.Google Scholar
  26. 26.
    Sousa, F., Jus, S., Erbel, A., Kokol, V., Cavaco-Paulo, A., & Gubitz, G. M. (2007). A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme and Microbial Technology, 40, 1772–1781.CrossRefGoogle Scholar
  27. 27.
    Cheng, S.-W., Wang, Y.-F., & Wang, M.-L. (2012). Statistical optimization of medium compositions for alkaline protease production by newly isolated Bacillus amyloliquefaciens. Chemical and Biochemical Engineering Quarterly, 26, 225–231.Google Scholar
  28. 28.
    Beg, Q. K., Sahai, V., & Gupta, R. (2003). Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochemistry, 39, 203–209.CrossRefGoogle Scholar
  29. 29.
    Fakhfakh, N., Ktari, N., Haddar, A., Mnif, I. H., Dahmen, I., & Nasri, M. (2011). Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochemistry, 46, 1731–1737.CrossRefGoogle Scholar
  30. 30.
    Kim, D.-O., Lee, K. W., Lee, H. J., & Lee, C. Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and Food Chemistry, 50, 3713–3717.CrossRefGoogle Scholar
  31. 31.
    Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115, 238–242.CrossRefGoogle Scholar
  32. 32.
    Zhu, L., Chen, J., Tang, X., & Xiong, Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56, 2714–2721.CrossRefGoogle Scholar
  33. 33.
    Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Jacinto-Hernández, C., Alaiz, M., Girón-Calle, J., Vioque, J., & Dávila-Ortiz, G. (2012). Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chemistry, 135, 1789–1795.CrossRefGoogle Scholar
  34. 34.
    Kong, B., & Xiong, Y. L. (2006). Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. Journal of Agricultural and Food Chemistry, 54, 6059–6068.CrossRefGoogle Scholar
  35. 35.
    Moat, A. G., Foster, J. W., Spector, M. P. (2003). in microbial physiology, John Wiley & Sons, Inc., pp. 475-502.Google Scholar
  36. 36.
    Cooper, G. M. (2000) The biosynthesis of cell constituent. In G. M. Cooper (Ed.), The cell: a molecular approach: 2nd edition. Sinauer Associates Inc, Boston University.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. Godinho
    • 1
    • 3
  • C. Pires
    • 1
    • 2
  • S. Pedro
    • 1
    • 2
  • B. Teixeira
    • 1
    • 2
    • 4
  • R. Mendes
    • 1
    • 2
  • M. L. Nunes
    • 1
    • 2
  • I. Batista
    • 1
    • 2
  1. 1.Department of Sea and Marine Resources, Division of Aquaculture and ValorizationPortuguese Institute of Sea and Atmosphere (IPMA, I.P.)LisbonPortugal
  2. 2.Interdisciplinary Center of Marine and Environmental Research (CIIMAR)University of PortoPortoPortugal
  3. 3.Enviromental Chemistry Research Unit, Instituto Superior de AgronomiaUniversity of LisbonLisbonPortugal
  4. 4.Research Unit of Organic Chemistry, Natural and Agro-food Products (QOPNA), Chemistry DepartmentAveiro UniversityAveiroPortugal

Personalised recommendations