Applied Biochemistry and Biotechnology

, Volume 178, Issue 5, pp 932–946 | Cite as

Dry Co-Digestion of Poultry Manure with Agriculture Wastes

  • Fatma Abouelenien
  • Yuzaburo Namba
  • Naomichi Nishio
  • Yutaka Nakashimada
Article

Abstract

This study tested the effect on thermophilic and mesophilic digestion of poultry manure (PM) or treated poultry manure (TPM) by the addition of agriculture wastes (AWS) as a co-substrate under dry conditions. PM was co-digested with a mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Results were increased methane content in biogas, with decreased ammonia accumulation and volatile acids. The highest performance occurred under mesophilic conditions, with a 63 and 41.3 % increase in methane production from addition of AWS to TPM (562 vs. 344 mL g VS−1 from control) and PM (406 vs. 287 mL g VS−1 from control), respectively. Thermophilic conditions showed lower performance than mesophilic conditions. Addition of AWS increased methane production by 150 and 69.6 % from PM (323.4 vs. 129 mL g VS−1 from control) and TPM (297.6 vs. 175.5 mL g VS−1 from control), respectively. In all experiments, 100 % acetate produced was degraded to methane. Maximum ammonia accumulation was lowered to 43.7 % by mixing of AWS (range 5.35–8.55 vs. 7.81–12.28 g N kg−1 bed). The pH was held at 7.3–8.8, a range suitable for methanogenesis.

Keywords

Dry co-digestion Methane production Poultry manure Coffee waste Cassava waste Coconut waste 

Notes

Acknowledgments

The authors are grateful to Hitachi Engineering and Services (HES), Japan, for financial support.

References

  1. 1.
    Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., et al. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489.CrossRefGoogle Scholar
  2. 2.
    Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120, 78–83.CrossRefGoogle Scholar
  3. 3.
    Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15, 821–826.CrossRefGoogle Scholar
  4. 4.
    Zhou, Y., Zhang, Z., Tomoko Nakamoto, T., Li, Y., Yang, Y., Utsumi, M., & Sugiura, N. (2011). Influence of substrate-to-inoculum ratio on the batch anaerobic digestion of bean curd refuse-okara under mesophilic conditions. Biomass and Bioenergy, 35, 3251–3256.CrossRefGoogle Scholar
  5. 5.
    Li, Y., Zhang, R., Chen, C., Liu, G., He, Y., & Liu, X. (2013). Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresource Technology, 149, 406–412.CrossRefGoogle Scholar
  6. 6.
    Schafer W., Lehto M., Teye F. (2006) Dry anaerobic digestion of organic residues on-farm-a feasibility study. MTT Agrifood Research Reports 77. Agricultural Engineering; Finland. http://www.mtt.fi/met/pdf/met77.pdf.
  7. 7.
    Brown, D., & Li, Y. (2013). Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, 127, 275–280.CrossRefGoogle Scholar
  8. 8.
    Brown, D., Shi, J., & Li, Y. (2012). Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource Technology, 124, 379–386.CrossRefGoogle Scholar
  9. 9.
    Xu, F., & Li, Y. (2012). Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresource Technology, 118, 219–226.CrossRefGoogle Scholar
  10. 10.
    Nishio, N., & Nakashimada, Y. (2007). Recent development of anaerobic digestion processes for recovery of energy from wastes. Journal of Bioscience and Bioengineering, 103, 105–112.CrossRefGoogle Scholar
  11. 11.
    Abouelenien, F., Kitamura, Y., Nishio, N., & Nakashimada, Y. (2009). Dry anaerobic ammonia-methane production from chicken manure. Applied Microbiology and Biotechnology, 82, 757–764.CrossRefGoogle Scholar
  12. 12.
    Abouelenien, F., Nakashimada, Y., & Nishio, N. (2009). Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. Journal of Bioscience and Bioengineering, 107, 293–295.CrossRefGoogle Scholar
  13. 13.
    Demirci, G. G., & Demirer, G. N. (2004). Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresource Technology, 93, 109–117.CrossRefGoogle Scholar
  14. 14.
    Forster-Carneiro, T., Pérez García, M., Romero García, L. I., & Sales, D. (2007). Dry thermophilic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources. Bioresource Technology, 98, 3195–3203.CrossRefGoogle Scholar
  15. 15.
    Borowski, S., & Weatherley, L. (2013). Co-digestion of solid poultry manure with municipal sewage sludge. Bioresource Technology, 142, 345–352.CrossRefGoogle Scholar
  16. 16.
    Bruni, E., Ward, A. G., Køcks, M., Anders Feilberg, A., Adamsen, A. P. S., Jensen, A. P., Allan, K., & Poulsen, A. K. (2013). Comprehensive monitoring of a biogas process during pulse loads with ammonia. Biomass and Bioenergy, 56, 211–220.CrossRefGoogle Scholar
  17. 17.
    Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effect of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40, 1285–1292.CrossRefGoogle Scholar
  18. 18.
    Karaalp D., Calıskan G., Azbar N. (2013) Performance evaluation of a biogas reactor processing chicken manure with high solids content Digital Proceeding Of THE ICOEST’2013-, Cappadocia C. Nevsehir, Turkey, June 18–21, 2013Google Scholar
  19. 19.
    Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101, 6368–6373.CrossRefGoogle Scholar
  20. 20.
    Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31, 1737–1744.CrossRefGoogle Scholar
  21. 21.
    Wang, X., Yang, G., Li, F., Feng, Y., & Ren, G. (2013). Response surface optimization of methane potentials in anaerobic co-digestion of multiple substrates: dairy, chicken manure and wheat. Waste Management & Research, 31, 60–66.CrossRefGoogle Scholar
  22. 22.
    Magbanua, B. S., Adams, T. T., & Johnston, P. (2001). Anaerobic co-digestion of hog and poultry waste. Bioresource Technology, 76, 165–168.CrossRefGoogle Scholar
  23. 23.
    Bujoczek, G., Oleszkiewicz, J., Sparling, R., & Cenkowski, S. (2000). High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research, 76, 51–60.CrossRefGoogle Scholar
  24. 24.
    Callaghan, F. J., Wase, D. A. J., Thayanithy, K., & Forster, C. F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy, 27, 71–77.CrossRefGoogle Scholar
  25. 25.
    Esposito, G., Frunzo, L., Liotta, F., Antonio Panico, A., & Pirozzi, F. (2012). Bio-Methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. Open Environmental Engineering Journal, 5, 1–8.CrossRefGoogle Scholar
  26. 26.
    Wall, D. M., Wu-Haan, W., & Safferman, S. I. (2012). Reconstitution of dewatered food processing residuals with manure to increase energy production from anaerobic digestion. Biomass and Bioenergy, 46, 429–434.CrossRefGoogle Scholar
  27. 27.
    Corro, G., Paniagua, L., Pal, U., Bañuelos, F., & Rosas, M. (2013). Generation of biogas from coffee-pulp and cow-dung co-digestion: Infrared studies of post combustion emissions. Energy Conversion and Management, 74, 471–481.CrossRefGoogle Scholar
  28. 28.
    Alvarez, R., & Liden, G. (2007). The effect of temperature variation on biomethanation at high altitude. Bioresource Technology, 99, 7278–7284.CrossRefGoogle Scholar
  29. 29.
    Panichnumsin, P., Noppharatana, A., Ahring, B. K., & Chaiprasert, P. (2010). Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass and Bioenergy, 34, 1117–1124.CrossRefGoogle Scholar
  30. 30.
    Abouelenien, F., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2014). Enhancement of methane production from co digestion of chicken manure with agricultural wastes. Bioresource Technology, 159, 80–87.CrossRefGoogle Scholar
  31. 31.
    APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: APHA, AWWA, WEF.Google Scholar
  32. 32.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugar and related substance. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  33. 33.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.Google Scholar
  34. 34.
    AOAC. (1995). Official method of analysis (16th ed., p. 1995). Virginia: Association of Official Agricultural Chemists.Google Scholar
  35. 35.
    Lazor, M., Hutňan, M., Sedlácek, S., Kolesárová, N., & Špalková, V. (2010). Anaerobic co-digestion of poultry manure and waste kitchen oil. In J. Markoš (Ed.), Proceedings of the 37th International Conference of Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 1399–1406. (37th International Conference of SSCHE May 24–28, Tatransk’e Matliare, Slovakia.Google Scholar
  36. 36.
    Angelidaki, I., & Ellegaard, L. (2003). Co digestion of manure and organic wastes in centralized biogasplants status and future trends. Applied Biochemistry and Biotechnology, 109, 95–105.CrossRefGoogle Scholar
  37. 37.
    El-Mashad, H. M., & Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101, 4021–4028.CrossRefGoogle Scholar
  38. 38.
    Raposo, F., Borja, R., Martin Santos, M. A., Martin, A., de la Rubia, M. A., & Rincon, B. (2009). Influence of inoculum-substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: process stability and kinetic evaluation. Chemical Engineering Journal, 149, 70–77.CrossRefGoogle Scholar
  39. 39.
    Apples, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the an-aerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781.CrossRefGoogle Scholar
  40. 40.
    Yangin-Gomec, C., & Ozturk, I. (2013). Effect of maize silage addition on biomethane recovery from mesophilic co-digestion of chicken and cattle manure to suppress ammonia inhibition. Energy Conversion and Management, 71, 92–100.CrossRefGoogle Scholar
  41. 41.
    Ahn, H. K., Smith, M. C., Kondrad, S. L., & White, J. W. (2010). Evaluation of biogas production potential by dry anaerobic digestion of switch grass-animal manure mixture. Applied Biochemistry and Biotechnology, 160, 965–975.CrossRefGoogle Scholar
  42. 42.
    Sung, S., & Liu, T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53, 43–52.CrossRefGoogle Scholar
  43. 43.
    Chen, G. Y., Chang, Z. Z., Ye, X. M., Du, J., Xu, Y. D., & Zhang, J. Y. (2012). Methane production by anaerobic co-digestion of chicken manure and Spartina alterniflora residue after producing methane. Huan Jing Ke Xue, 33, 203–207.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fatma Abouelenien
    • 1
  • Yuzaburo Namba
    • 2
  • Naomichi Nishio
    • 2
  • Yutaka Nakashimada
    • 2
  1. 1.Department of Hygiene and Preventive Medicine, Faculty of Vet MedKafer Elshikh UniversityKafr ElsheikhEgypt
  2. 2.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashiJapan

Personalised recommendations