Advertisement

Applied Biochemistry and Biotechnology

, Volume 178, Issue 2, pp 211–223 | Cite as

Monascus: a Reality on the Production and Application of Microbial Pigments

  • Francielo Vendruscolo
  • Rose Marie Meinicke Bühler
  • Júlio Cesar de Carvalho
  • Débora de Oliveira
  • Denise Estevez Moritz
  • Willibaldo Schmidell
  • Jorge Luiz NinowEmail author
Article

Abstract

Monascus species can produce yellow, orange, and red pigments, depending on the employed cultivation conditions. They are classified as natural pigments and can be applied for coloration of meat, fishes, cheese, beer, and pates, besides their use in inks for printer and dyes for textile, cosmetic, and pharmaceutical industries. These natural pigments also present antimicrobial activity on pathogenic microorganisms and other beneficial effects to the health as antioxidant and anticholesterol activities. Depending on the substrates, the operational conditions (temperature, pH, dissolved oxygen), and fermentation mode (state solid fermentation or submerged fermentation), the production can be directed for one specific color dye. This review has a main objective to present an approach of Monascus pigments as a reality to obtaining and application of natural pigments by microorganisms, as to highlight properties that makes this pigment as promising for worldwide industrial applications.

Keywords

Microbial pigments Biomolecules Solid state fermentation Submerged fermentation Monascus 

References

  1. 1.
    Aberoumand, A. (2011). A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World Journal of Dairy & Food Sciences., 6(1), 71–78.Google Scholar
  2. 2.
    Domínguez-Espinosa, R. M., & Webb, C. (2003). Submerged fermentation in wheat substrates for production of Monascus pigments. World Journal of Microbiology and Biotechnology., 19, 329–336.CrossRefGoogle Scholar
  3. 3.
    Sabater-Vilar, M., Maas, R. F. M., & Fink-Gremmels, J. (1999). Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutation Research., 444, 7–16.CrossRefGoogle Scholar
  4. 4.
    Pennacchi, M. G. C., Rodrígues-Fernández, D. E., Vendruscolo, F., Maranho, L. T., Marc, I., Cardoso, L. A. C. A comparison of cell disruption procedures for the recovery of intracellular carotenoids from Sporobolomyces ruberrimus H110. International Journal of Applied Biology and Pharmaceutical Technology. 6(1), 136–143.Google Scholar
  5. 5.
    Dufossé, L. (2004). Pigments in Food, More than Colours…. Quimper: Université de Bretagne Occidentale Publ.Google Scholar
  6. 6.
    Dufossé, L., Galaup, P., Yaron, A., Arad, ,. S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology., 16(9), 389–406.CrossRefGoogle Scholar
  7. 7.
    Dufossé, L. (2006). Production of food grade pigments. Food Technology and Biotechnology., 44(3), 313–321.Google Scholar
  8. 8.
    Hajjaj, H., Blanc, P., Groussac, E., Uribelarrea, J. L., Goma, G., & Loubiere, P. (2000). Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme and Microbial Technology., 27, 619–625.CrossRefGoogle Scholar
  9. 9.
    Mostafa, M. E., & Abbady, M. S. (2014). Secondary metabolites and bioactivity of the monascus pigments review article. Global Journal of Biotechnology and Biochemistry., 9(1), 1–13.Google Scholar
  10. 10.
    Carvalho, J. C., Pandey, A., Babitha, S., & Soccol, C. R. (2003). Production of Monascus biopigments: an overview. Agro-Industry Hi-Tech., 14(6), 37–42.Google Scholar
  11. 11.
    Carvalho, J. C., Oishi, B. O., Pandey, A., & Soccol, C. R. (2005). Biopigments from Monascus: strain selection, citrinin production and color stability. Brazilian Archives of Biology and Technology., 48(6), 885–889.CrossRefGoogle Scholar
  12. 12.
    Tseng, Y., Yang, J., Chang, H., Lee, Y., & Mau, J. (2006). Antioxidant properties of methanolic extracts from monascal adlay. Food Chemistry., 97(3), 375–381.CrossRefGoogle Scholar
  13. 13.
    Yang, J. H., Tseng, Y. H., Lee, Y. L., & Mau, J. L. (2006). Antioxidant properties of methanolic extracts from monascal rice. lwt., 39, 740–747.CrossRefGoogle Scholar
  14. 14.
    Vendruscolo, F., Pitol, L. O., Carciofi, B. A. M., Moritz, D. E., Laurindo, J. B., & Schmidell, W. (2010). Construction and application a vane system in a rotational rheometer for determination of the rheological properties of Monascus ruber CCT 3802. Journal of Biorheology., 24, 29–35.CrossRefGoogle Scholar
  15. 15.
    Mukherjee, G., & Singh, S. K. (2011). Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochemistry., 46, 188–192.CrossRefGoogle Scholar
  16. 16.
    Huang, Z., Xu, Y., Zhang, H., Li, L., He, Q., & Li, Y. (2011). Simultaneous determination of two Monascus metabolites in red yeast rice by HPLC using fluorescence detection. Food Chemistry., 127, 1837–1841.CrossRefGoogle Scholar
  17. 17.
    Hsu, W. H., & Pan, T. M. (2012). Monascus purpureus-fermented products and oral cancer: a review. Applied Microbiology and Biotechnology., 93, 1831–1842.CrossRefGoogle Scholar
  18. 18.
    Meinicke, R. M., Vendruscolo, F., Moritz, D. E., Oliveira, D., Ninow, J. L. (2012). Potential use of glycerol as substrate for the production of red pigments by Monascus ruber in submerged fermentation. Biocatalysis and Agricultural Biotechnology. 1, p.238–242.Google Scholar
  19. 19.
    Shi, Y. C., & Pan, T. M. (2012). Red mold, diabetes, and oxidative stress: a review. Applied Microbiology and Biotechnology., 94, 47–55.CrossRefGoogle Scholar
  20. 20.
    Vendruscolo, F., Rossi, M. J., Schmidell, W., Ninow, J. L. (2012). Determination of oxygen solubility in liquid media. ISRN Chemical Engineering. v. 2012, Article ID 601458.Google Scholar
  21. 21.
    Chen, W., He, Y., Zhou, Y., Shao, Y., Feng, Y., Li, M., & Chen, F. (2015). Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Comprehensive Reviews in Food Science and Food Safety., 14, 555–567.CrossRefGoogle Scholar
  22. 22.
    Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage. 3ed (p. 535). London: Springer.CrossRefGoogle Scholar
  23. 23.
    Shao, C., Lei, M. L., Mão, Z., Shou, Y., & Chen, F. (2014). Insights into Monascus biology at the genetic level. Applied Microbiology and Biotechnology., 98, 3911–3922.CrossRefGoogle Scholar
  24. 24.
    Cheng, M. J., Wu, M. D., Chen, Y. L., Chen, I. S., Su, Y. S., & Yuan, G. F. (2013). Chemical constituents of red yeast rice fermented with the fungus Monascus pilosus. Chemistry of Natural Compounds., 49(2), 249–252.CrossRefGoogle Scholar
  25. 25.
    Campoy, S., Rumbero, A., Martin, J. F., & Liras, P. (2006). Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Applied Microbiology and Biotechnology., 70, 488–496.CrossRefGoogle Scholar
  26. 26.
    Hsu, Y. W., Hsu, L. C., Liang, Y. H., Kuo, Y. H., & Pan, T. M. (2011). New bioactive orange pigments with yellow fluorescence from Monascus-fermented dioscorea. Journal of Agricultural and Food Chemistry., 59, 4512–4518.CrossRefGoogle Scholar
  27. 27.
    Vendruscolo, F., Tosin, I., Giachini, A. J., Schmidell, W., & Ninow, J. L. (2014). Antimicrobial activity of Monascus pigments produced in submerged fermentation. Journal of Food Processing and Preservation., 38(4), 1860–1865.CrossRefGoogle Scholar
  28. 28.
    Bühler, R. M. M., Dutra, A. C., Vendruscolo, F., Moritz, D. E., & Ninow, J. L. (2013). Monascus pigment production in bioreactor using a co-product of biodiesel substrate. Food Science and Technology., 33, 9–13.Google Scholar
  29. 29.
    Bühler, R. M. M., Müller, B. L., Moritz, D. E., Vendruscolo, F., Oliveira, D., & Ninow, J. L. (2015). Influence of light intensity on growth and pigment production by Monascus ruber in submerged fermentation. Applied Biochemistry and Biotechnology., 176, 1277–1289.CrossRefGoogle Scholar
  30. 30.
    Lian, X., Liu, L., Dong, S., Wu, H., Zhao, J., & Han, Y. (2015). Two new monascus red pigments produced by Shandong Zhonghui Food Company in China. European Food Research Technology., 240(4), 719–724.CrossRefGoogle Scholar
  31. 31.
    Hajjaj, H., Klaébe, A., Loret, M. O., Tzédakis, T., Goma, G., & Blanc, P. J. (1997). Production and identification of N-glucosylrubropunctamine and N-glucosylmonascorubramine from Monascus ruber and occurrence of electron donor-acceptor complexes in these red pigments. Applied and Environmental Microbiology., 63(7), 2671–2678.Google Scholar
  32. 32.
    Jung, H., Kim, C., Kim, K., & Shin, C. S. (2003). Color characteristics of Monascus pigments derived by fermentation with various amino acids. Journal of Agricultural and Food Chemistry., 51(5), 1302–1306.CrossRefGoogle Scholar
  33. 33.
    Hamano, P. S., Orozco, S. F. B., & Kilikian, B. V. (2005). Concentration determination of extracellular and intracellular red pigments produced by a Monascus sp. Brazilian Archives of Biology and Technology., 48, 43–49.CrossRefGoogle Scholar
  34. 34.
    Tseng, Y. Y., Chen, M. T., & Lin, C. F. (2000). Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrate, polyphosphate and various sugars. Journal of Applied Microbiology., 88, 31–37.CrossRefGoogle Scholar
  35. 35.
    Hamdi, M., Blanc, P. J., & Goma, G. (1996). Effect of aeration conditions on the production of red pigments by Monascus purpureus growth on prickly pear juice. Process Biochemistry., 31(6), 543–547.CrossRefGoogle Scholar
  36. 36.
    Lin, T. F., & Demain, A. L. (1992). Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. Journal of Industrial Microbiology., 9, 173–179.CrossRefGoogle Scholar
  37. 37.
    Carels, M., & Shepherd, D. (1975). Sexual reproductive cycle of Monascus in submerged shaken culture. Journal of Bacteriology., 122(1), 288–294.Google Scholar
  38. 38.
    Suh, J. H., & Shin, C. S. (2000). Physiological analysis on novel coculture of Monascus sp. J101 with Saccharomyces cerevesiae. FEMS Microbiology Letters, 190, 241–245.CrossRefGoogle Scholar
  39. 39.
    Lin, C. F., & Iizuka, H. (1982). Production of extracellular pigment by a mutant of Monascus kaoliang sp. nov. Applied and Environmental Microbiology, 43(3), 671–676.Google Scholar
  40. 40.
    Krairak, S., Yamamura, K., Irie, R., Nakajima, M., Shimizu, H., Anage, P. C., Yongsmith, B., & Shioya, S. (2000). Maximizing yellow pigment production in fed-batch culture of Monascus sp. Journal of Bioscience and Bioengineering., 90(4), 363–367.CrossRefGoogle Scholar
  41. 41.
    Lopes, F. C., Tichota, D. M., Pereira, J. Q., Segalin, J., Rios, A. O., & Brandelli, A. (2013). Pigment production by filamentous fungi on agro-industrial byproducts: as eco-friendly alternative. Applied Biochemistry and Biotechnology, 171, 616–625.CrossRefGoogle Scholar
  42. 42.
    Lian, X., Wang, C., & Guo, K. (2007). Identification of new red pigments produced by Monascus ruber. Dyes and Pigments., 73, 121–125.CrossRefGoogle Scholar
  43. 43.
    Lee, Y. K., Chen, D. C., Chauvatcharin, S., Seki, T., & Yoshida, T. (1995). Production of Monascus pigments by a solid-liquid state culture method. Journal of Fermentation and Bioengineering., 79(5), 516–518.CrossRefGoogle Scholar
  44. 44.
    Pastrana, L., & Goma, G. (1995). Estimation of bioprocess variables from Monascus ruber cultures by means of stoichiometric models. Process Biochemistry., 30(7), 607–613.CrossRefGoogle Scholar
  45. 45.
    Juzlová, P., Rezanka, T., Martínková, L., Lozinski, J., & Machek, F. (1994). Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme and Microbial Technology., 16, 996–101.CrossRefGoogle Scholar
  46. 46.
    Juzlová, P., Rezanka, T., Martínková, L., & Kren, V. (1996). Long-chain fatty acids from Monascus purpureus. Phytochemistry, 43(1), 151–153.CrossRefGoogle Scholar
  47. 47.
    Hajjaj, H., Blanc, P. J., Groussac, E., Goma, G., Uribelarrea, G., & Loubiere, P. (1999). Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus ruber. Biotechnology and Bioengineering., 64(4), 497–501.CrossRefGoogle Scholar
  48. 48.
    Hajjaj, H., Laébé, A., Loret, M. O., Goma, G., Blanc, P. J., & François, J. (1999). Biosynthetic pathway of citrinin in the filamentous fungus Monascus rubber as revealed by 13C nuclear magnetic resonance. Applied and Environmental Microbiology., 65(1), 311–314.Google Scholar
  49. 49.
    Wang, Y. Z., Ju, X. L., & Zhou, Y. G. (2005). The variability of citrinin production in Monascus type cultures. Food Microbiology., 22, 145–148.CrossRefGoogle Scholar
  50. 50.
    Babitha, S., Soccol, C. R., & Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology., 98, 1554–1560.CrossRefGoogle Scholar
  51. 51.
    Dweck, A. C. (2002). Natural ingredients for colouring hair. International Journal of Cosmetic Science., 24(5), 287–302.CrossRefGoogle Scholar
  52. 52.
    Jongrungruangchok, S., Kittakoop, P., Yongsmith, B., Bavovada, R., Tanasupawat, S., Lartpornmatulee, N., & Thebtaranonth, Y. (2004). Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry, 65, 2569–2575.CrossRefGoogle Scholar
  53. 53.
    Jung, H., Kim, C., & Shin, C. S. (2005). Enhanced photostability of Monascus pigments derived with various amino acids via fermentation. Journal of Agricultural and Food Chemistry., 53, 7108–7114.CrossRefGoogle Scholar
  54. 54.
    Babitha, S., Soccol, C. R., & Pandey, A. (2006). Jackfruit seed—a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technology and Biotechnology., 44(4), 465–471.Google Scholar
  55. 55.
    Chen, M., & Johns, M. R. (1993). Effect of pH and nitrogen source on pigment production by Monascus purpureus. Applied Microbiology and Biotechnology., 40, 132–138.CrossRefGoogle Scholar
  56. 56.
    Orozco, S. F. B., & Kilikian, B. V. (2008). Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World Journal Microbiology and Biotechnology., 24, 263–268.CrossRefGoogle Scholar
  57. 57.
    Miyake, T., Mori, A., Okuno, A. K. T., Usui, Y., Sammoto, F. S. H., & Kariyama, A. W. M. (2005). Light effects on cell development and secondary metabolism in Monascus. Journal of Industrial Microbiology and Biotechnology, 32, 103–108.CrossRefGoogle Scholar
  58. 58.
    Velmurugan, P., Lee, H. L., Venil, C. K., Lakshmanaperumalsamy, P., Chae, J. C., & Oh, B. T. (2010). Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. Journal of Bioscience and Bioengineering., 109(4), 346–350.CrossRefGoogle Scholar
  59. 59.
    Ahn, J., Jung, J., Hyung, W., Haam, S., & Shin, C. (2006). Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnology Progress, 22, 338–340.CrossRefGoogle Scholar
  60. 60.
    Fang, H. H. P., Li, C., & Zhang, T. (2006). Acidophilic biohydrogen production from rice slurry. International Journal of Hydrogen Energy., 31, 683–692.CrossRefGoogle Scholar
  61. 61.
    Vendruscolo, F., Ribeiro, C. S., Espósito, E., & Ninow, J. L. (2009). Biological treatment of apple pomace and addition in diet for fish. Revista Brasileira de Engenharia Agrícola e Ambiental., 13(4), 487–493.CrossRefGoogle Scholar
  62. 62.
    Vendruscolo, F., & Ninow, J. L. (2014). Apple pomace as a substrate for fungal chitosan production in an airlift bioreactor. Biocatalysis and Agricultural Biotechnology., 4(4), 338–342.CrossRefGoogle Scholar
  63. 63.
    Yang, S., Zhang, H., Li, Y., Qian, J., & Wang, W. (2005). The ultrasonic effect on biological characteristics of Monascus sp. Enzyme Microbiology and Technology., 37, 139–144.CrossRefGoogle Scholar
  64. 64.
    Vendruscolo, F., Müller, B. L., Moritz, D. E., Oliveira, D., Schmidell, W., & Ninow, J. L. (2013). Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatalysis and Agricultural Biotechnology., 2(3), 278–284.CrossRefGoogle Scholar
  65. 65.
    Hamano, P. S., & Kilikian, B. V. (2006). Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Brazilian Journal of Chemical Enginnering, 23(4), 443–449.Google Scholar
  66. 66.
    Wang, S., Yen, Y., Tsiao, W., Chang, W., & Wang, C. (2002). Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology., 31, 337–344.CrossRefGoogle Scholar
  67. 67.
    Kongruang, S. (2011). Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. Journal of Industrial Microbiology and Biotechnology., 38, 93–99.CrossRefGoogle Scholar
  68. 68.
    Silveira, S. T., Daroit, D. J., & Brandelli, A. (2008). Pigment production by Monascus purpureus in grape waste using factorial design. LWT-Food Science and Technology., 41, 170–174.CrossRefGoogle Scholar
  69. 69.
    Hamdi, M., Blanc, P. J., Loret, M. O., & Goma, G. (1997). A new process for red pigment production by submerged culture of Monascus purpureus. Bioprocess Engineering., 17, 75–79.Google Scholar
  70. 70.
    Mei, L. X., Hai, S. X., Lan, X., Wen, D. Z., & Ren, G. S. (2012). Validated RP-HPLC method for the determination of citrinin in xuezhikang capsule and other Monascus-fermented products. E-Journal of Chemistry., 9(1), 260–266.CrossRefGoogle Scholar
  71. 71.
    Xu, G., Chen, Y., Yu, H., Cameleyre, X., & Blanc, P. J. (2003). HPLC fluorescence method for determination of citrinin in Monascus cultures. Archives Lebensmittelhyg., 54, 82–84.Google Scholar
  72. 72.
    Wang, J. J., Lee, C. L., & Pan, T. M. (2004). Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. Journal of Agricultural and Food Chemistry, 52, 6977–6982.CrossRefGoogle Scholar
  73. 73.
    Shimizu, T., Kinoshita, H., Ishihara, S., Sakai, K., Nagai, S., & Nihira, T. (2005). Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Applied Environmental Microbiology., 71(7), 3453–3457.CrossRefGoogle Scholar
  74. 74.
    Jia, X. Q., Xu, Z. N., Zhou, L. P., & Sung, C. K. (2010). Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metabolic Engineering., 12, 1–7.CrossRefGoogle Scholar
  75. 75.
    Lima, A. S., Alegre, R. M., & Meirelles, A. J. A. (2002). Partitioning of pectinolytic enzymes in polyethylene glycol/potassium phosphate aqueous two-phase systems. Carbohydrate Polymers., 50, 63–68.CrossRefGoogle Scholar
  76. 76.
    Pimentel, K. A., Araújo, A. I., Figueiredo, Z. M. B., Silva, R. A., Cavalcanti, M. T. H., Moreira, M. T. H., Filho, K. A., & Porto, A. L. F. (2013). Separation and Purification Technology., 110, 158–163.CrossRefGoogle Scholar
  77. 77.
    Baranova, M., Mala, P., Burdová, O., Hadbavny, M., & Sabolová, G. (2004). Effect of natural pigment of Monascus purpureus on the organoleptic characters of processed cheese. Bulletin of the Veterinary Institute in Pullawy., 48, 59–62.Google Scholar
  78. 78.
    Fabre, C. E., Goma, G., & Blanc, P. J. (1993). Production and food applications of the red pigments of Monascus ruber. Journal of Food Science., 58(5), 1099–1110.CrossRefGoogle Scholar
  79. 79.
    Gaysinsky, S. & Weiss, J. (2007). Aromatic and spice plants: Uses in food safety. Stewart Postharvest Review. 3(4), article 5.Google Scholar
  80. 80.
    Zink, D. L. (1997). The impact of consumer demands and trends on food processing. Emerging Infectious Diseases., 3(4), 467–469.CrossRefGoogle Scholar
  81. 81.
    Naidu, A. S. (2000). Natural food antimicrobial systems. Boca Raton, London: CRC Press.CrossRefGoogle Scholar
  82. 82.
    Martínková, L., Juzlová, P., & Vesely, D. (1995). Biological activity of polyketide pigments produced by the fungus Monascus. Journal of Applied Microbiology., 79(6), 609–616.Google Scholar
  83. 83.
    Wong, H., & Koehler, P. E. (1981). Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. Journal of Food Science., 46, 589–592.CrossRefGoogle Scholar
  84. 84.
    Xu, W. (2011). Study on the liquid fermentation to produce Monascus pigment with corn starch and antibacteria. Advanced Materials Research., 1336, 183–185.Google Scholar
  85. 85.
    Kim, C., Jung, H., Kim, Y. O., & Shin, C. S. (2006). Antimicrobial activities of amino acid derivatives of Monascus pigments. FEMS Microbiology Letters., 264, 117–124.CrossRefGoogle Scholar
  86. 86.
    Pyo, Y. H., & Lee, T. C. (2007). The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. Journal of Food Science., 72, 218–223.CrossRefGoogle Scholar
  87. 87.
    Kuo, C.-F., Hou, M.-H., Wang, T.-S., Chyau, C.-C., & Chen, Y.-T. (2009). Enhanced antioxidant activity of Monascus pilosus fermented products by addition of ginger to the medium. Food Chemistry., 116, 915–922.CrossRefGoogle Scholar
  88. 88.
    Choe, D., Lee, J., Woo, S., & Shin, C. S. (2012). Evaluation of the amine derivatives of Monascus pigment with anti-obesity activities. Food Chemistry., 134, 315–323.CrossRefGoogle Scholar
  89. 89.
    Chiu, C. H., Ni, K. H., Guu, Y. K., & Pan, T. M. (2006). Production of red mold rice using a modified Nagata type koji maker. Applied Mirociology Biotechnology., 73(2), 297–304.CrossRefGoogle Scholar
  90. 90.
    Seenivasan, A., Subhagar, S., Aravindan, R., & Viruthagiri, T. (2008). Microbial production and biomedical applications of lovastatin. Indian Journal of Pharmacology Science., 70, 701–709.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Francielo Vendruscolo
    • 1
  • Rose Marie Meinicke Bühler
    • 2
  • Júlio Cesar de Carvalho
    • 3
  • Débora de Oliveira
    • 2
  • Denise Estevez Moritz
    • 2
  • Willibaldo Schmidell
    • 2
  • Jorge Luiz Ninow
    • 2
    Email author
  1. 1.College of Agronomy and Food EngineeringFederal University of GoiásGoiâniaBrazil
  2. 2.Chemical and Food Engineering DepartmentFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Biotechnology and Bioprocess Engineering DepartmentFederal University of ParanáCuritibaBrazil

Personalised recommendations