Applied Biochemistry and Biotechnology

, Volume 177, Issue 7, pp 1541–1552 | Cite as

Effect of Salinity on Methanogenic Propionate Degradation by Acclimated Marine Sediment-Derived Culture

  • Toyokazu Miura
  • Akihisa Kita
  • Yoshiko Okamura
  • Tsunehiro Aki
  • Yukihiko Matsumura
  • Takahisa Tajima
  • Junichi Kato
  • Yutaka Nakashimada
Article

Abstract

Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures. The rate of propionate degradation increased eightfold during 10 rounds of cultivation. Microbial community composition was determined through pyrosequencing of 16S rRNA gene amplicons after 10 rounds of cultivation. Taxa analysis was conducted for the reads obtained by pyrosequencing. Known propionate degraders were undetectable in the acclimated culture. Comparison of bacterial taxa in the original sediment with those in the acclimated culture revealed that the populations of four bacterial taxa were significantly increased during acclimation. Methanolobus was the predominant archaea genus in the acclimated culture. The propionate degradation rate of the acclimated culture was not affected by salinity of up to equivalent of 1.9 % NaCl. The rate decreased at higher salinity levels and was more than 50 % of the maximum rate even at equivalent of 4.3 % NaCl.

Keywords

Methane production Acetogenesis Salt tolerance Marine sediments Microbial community Propionate degraders Methanogens 

Notes

Acknowledgments

This work was supported by the Core Research of Evolutional Science and Technology program (CREST) from the Japan Science and Technology Agency (JST).

References

  1. 1.
    Rinzema, A., van Lier, J., & Lettinga, G. (1988). Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme and Microbial Technology, 10, 24–32.CrossRefGoogle Scholar
  2. 2.
    Liu, Y. T., & Boone, D. R. (1991). Effects of salinity on methanogenic decomposition. Bioresource Technology, 35, 271–273.CrossRefGoogle Scholar
  3. 3.
    Feijoo, G., Soto, M., Méndez, R., & Lema, J. M. (1995). Sodium inhibition in the anaerobic digestion process: antagonism and adaptation phenomena. Enzyme and Microbial Technology, 17, 180–188.CrossRefGoogle Scholar
  4. 4.
    Mottet, A., Habouzit, F., & Steyer, J. P. (2014). Anaerobic digestion of marine microalgae in different salinity levels. Bioresource Technology, 158, 300–306.CrossRefGoogle Scholar
  5. 5.
    Miura, T., Kita, A., Okamura, Y., Aki, T., Matsumura, Y., Tajima, T., Kato, J., & Nakashimada, Y. (2014). Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity. Bioresource Technology, 169, 362–366.CrossRefGoogle Scholar
  6. 6.
    McCarty, P. L., & Smith, D. P. (1986). Anaerobic wastewater treatment. Environmental Science and Technology, 20, 1200–1206.CrossRefGoogle Scholar
  7. 7.
    Stams, A. J. M., Sousa, D. Z., Kleerebezem, R., & Plugge, C. M. (2012). Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Science and Technology, 66, 352–362.CrossRefGoogle Scholar
  8. 8.
    Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.-P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102, 200–206.CrossRefGoogle Scholar
  9. 9.
    Ito, T., Yoshiguchi, K., Ariesyady, H. D., & Okabe, S. (2012). Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresource Technology, 123, 599–607.CrossRefGoogle Scholar
  10. 10.
    Jard, G., Jackowiak, D., Carrère, H., Delgenes, J. P., Torrijos, M., Steyer, J. P., & Dumas, C. (2012). Batch and semi-continuous anaerobic digestion of Palmaria palmata: comparison with Saccharina latissima and inhibition studies. Chemical Engineering Journal, 209, 513–519.CrossRefGoogle Scholar
  11. 11.
    Ma, J., Carballa, M., Van de Caveye, P., & Verstraete, W. (2009). Enhanced propionic acid degradation (EPAD) system: proof of principle and feasibility. Water Research, 43, 3239–3248.CrossRefGoogle Scholar
  12. 12.
    Ma, J., Mungoni, L. J., Verstraete, W., & Carballa, M. (2009). Maximum removal rate of propionic acid as a sole carbon source in UASB reactors and the importance of the macro- and micro-nutrients stimulation. Bioresource Technology, 100, 3477–3482.CrossRefGoogle Scholar
  13. 13.
    Schramm, W., & Lehnberg, W. (1984). Mass culture of brackish-water-adapted seaweeds in sewage-enriched seawater. II: fermentation for biogas production. Hydrobiologia, 116, 282–287.CrossRefGoogle Scholar
  14. 14.
    Kendall, M. M., Liu, Y., & Boone, D. R. (2006). Butyrate- and propionate-degrading syntrophs from permanently cold marine sediments in Skan Bay, Alaska, and description of Algorimarina butyrica gen. nov., sp nov. FEMS Microbiology Letters, 262, 107–114.CrossRefGoogle Scholar
  15. 15.
    Miura, T., Kita, A., Okamura, Y., Aki, T., Matsumura, Y., Tajima, T., Kato, J., & Nakashimada, Y. (2015). Improved methane production from brown algae under high salinity by fed-batch acclimation. Bioresource Technology, 187, 275–281.CrossRefGoogle Scholar
  16. 16.
    Mawson, A. J., Earle, R. L., & Larsen, V. F. (1991). Degradation of acetic and propionic acids in the methane fermentation. Water Research, 25, 1549–1554.CrossRefGoogle Scholar
  17. 17.
    Plugge, C. M., Zhang, W., Scholten, J. C. M., & Stams, A. J. M. (2011). Metabolic flexibility of sulfate-reducing bacteria. Frontiers in Microbiology, 2, 1–8.CrossRefGoogle Scholar
  18. 18.
    Li, Y.-F., Nelson, M. C., Chen, P.-H., Graf, J., Li, Y., & Yu, Z. (2015). Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Applied Microbiology and Biotechnology, 99, 969–980.CrossRefGoogle Scholar
  19. 19.
    Gao, Y., Ryu, H., Domingo, J. W. S., & Lee, H.-S. (2014). Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells. Bioresource Technology, 153, 245–253.CrossRefGoogle Scholar
  20. 20.
    Abildgaard, L., Ramsing, N. B., & Finster, K. (2004). Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. International Journal of Systematic and Evolutionary Microbiology, 54, 393–399.CrossRefGoogle Scholar
  21. 21.
    Wu, S.-Y., & Lai, M.-C. (2011). Methanogenic archaea isolated from Taiwan’s Chelungpu fault. Applied and Environmental Microbiology, 77, 830–838.CrossRefGoogle Scholar
  22. 22.
    Sakai, S., Ehara, M., Tseng, I.-C., Yamaguchi, T., Bräuer, S. L., Cadillo-Quiroz, H., Zinder, S. H., & Imachi, H. (2012). Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. International Journal of Systematic and Evolutionary Microbiology, 62, 1389–1395.CrossRefGoogle Scholar
  23. 23.
    De Vrieze, J., Hennebel, T., Boon, N., & Verstraete, W. (2012). Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Toyokazu Miura
    • 1
    • 3
  • Akihisa Kita
    • 1
    • 3
  • Yoshiko Okamura
    • 1
    • 3
  • Tsunehiro Aki
    • 1
    • 3
  • Yukihiko Matsumura
    • 2
    • 3
  • Takahisa Tajima
    • 1
    • 3
  • Junichi Kato
    • 1
  • Yutaka Nakashimada
    • 1
    • 3
  1. 1.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashiJapan
  2. 2.Division of Energy and Environmental Engineering, Institute of EngineeringHiroshima UniversityHigashiJapan
  3. 3.CRESTJST, 4-1-8 HonchoKawaguchiJapan

Personalised recommendations