Applied Biochemistry and Biotechnology

, Volume 177, Issue 7, pp 1466–1479 | Cite as

2-Acetyl-1-Pyrroline Augmentation in Scented indica Rice (Oryza sativa L.) Varieties Through Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS) Gene Transformation

  • Kayghobad Kaikavoosi
  • Trupti D. Kad
  • Rahul L. Zanan
  • Altafhusain B. NadafEmail author


2-Acetyl-1-pyrroline (2AP) has been identified as a principal aroma compound in scented rice varieties. Δ1-Pyrroline-5-carboxylate synthetase (P5CS) gene is reported to regulate the proline synthesis in plants and acts as the precursor of 2AP. Two scented indica rice varieties, namely Ambemohar 157 and Indrayani, were subjected to Agrobacterium tumefaciens-mediated genetic transformation containing P5CS gene. Overexpression of P5CS led to a significant increase in proline, P5CS enzyme activity and 2AP levels in transgenic calli, vegetative plant parts, and seeds over control in both the varieties. 2AP level increased more than twofold in transgenic seeds in both varieties. This is the first report of enhancement in 2AP content through overexpression of using P5CS gene, indicating the role of proline as a precursor amino acid in the biosynthesis of 2AP in scented rice.


Scented indica rice 2-Acetyl-1-pyrroline Δ1-Pyrroline-5-carboxylate synthetase (P5CSGenetic transformation Proline Volatile compounds 



1-Pyrroline-5-carboxylic acid

2, 4-D

2,4-Dichlorophenoxyacetic acid






Betaine aldehyde dehydrogenase 2


Gas chromatography–flame-ionized detector


Gas chromatography–mass spectrometry


Glutamic γ-semialdehyde


Headspace–solid phase micro-extraction


Luria broth


Naphthalene acetic acid


RNA interference




γ-Aminobutyric acid


Δ1-Pyrroline-5-carboxylate synthetase



The authors thank Dr. A. Karkhane, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran, for providing the pBI121-P5CS vector. The authors are thankful to Dr. P. Srinivas (Central Food and Technology Research Institute, Mysore, India) for the generous gift of authentic 2AP.


  1. 1.
    Buttery, R. G., Ling, L. C., & Juliano, B. O. (1982). 2-Acetyl-1-pyrolline; an important aroma component of cooked rice. Chemistry and Industry (London), 23, 958–959.Google Scholar
  2. 2.
    Buttery, R. G., Ling, L. C., Juliano, B. O., & Turnbaugh, J. G. (1983). Cooked rice aroma and 2-actyl-1-pyrroline. Journal of Agricultural and Food Chemistry, 31, 823–826.CrossRefGoogle Scholar
  3. 3.
    Ganajaxi, & Math, K. K. (2008). Effect of organic and inorganic fertilizers on yield and aroma of scented rice in lowland situations. International Journal of Agricultural Sciences, 4(1), 79–80.Google Scholar
  4. 4.
    Yang, S., Zou, Y., Liang, Y., Xia, B., Liu, S., Md, I., Li, D., Li, Y., Chen, L., Zeng, Y., Liu, L., Chen, Y., Li, P., & Zhu, J. (2012). Role of soil total nitrogen in aroma synthesis of traditional regional aromatic rice in China. Field Crops Research, 125, 151–160.CrossRefGoogle Scholar
  5. 5.
    Mo, Z., Li, W., Pan, S., Fitzgerald, T. L., Xiao, F., Tang, Y., Wang, Y., Duan, M., Tian, H., & Tang, X. (2015). Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice., 8, 9.CrossRefGoogle Scholar
  6. 6.
    Goufo, P., Duan, M., Wongpornchai, S., & Tang, X. (2010). Some factors affecting the concentration of the aroma compound 2-acetyl-1-pyrroline in two fragrant rice cultivars grown in south China. Frontiers of Agriculture in China, 4(1), 1–9.CrossRefGoogle Scholar
  7. 7.
    Poonlaphdecha, J., Maraval, I., Roques, S., Audebert, A., Boulanger, R., Bry, X., & Gunata, Z. (2012). Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-acetyl-1-pyrroline, proline, and GABA levels. Journal of Agricultural and Food Chemistry, 60, 3824–3830.CrossRefGoogle Scholar
  8. 8.
    Yoshihashi, T., Kabaki, N., Nguyen, T. T. H., & Inatomi, H. (2004). Formation of flavor compound in aromatic rice and its fluctuations with drought stress. Research Highlights JIRCAS, 2002-2003, 32–33.Google Scholar
  9. 9.
    Niu, X., Tang, W., Huang, W., Ren, G., Wang, Q., Luo, D., Xiao, Y., Yang, S., Wang, F., & Lu, B. R. (2008). RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biology, 8, 1–10.CrossRefGoogle Scholar
  10. 10.
    Huang, T. C., Teng, C. S., Chang, J. L., Chuang, H. S., Ho, C. T., & Wu, M. L. (2008). Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with ∆1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. Journal of Agricultural and Food Chemistry, 56, 7399–7404.CrossRefGoogle Scholar
  11. 11.
    Schieberle, P. (1990). The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 191, 206–209.CrossRefGoogle Scholar
  12. 12.
    Romanczyk Jr., L. J., McClelland, C. A., Post, L. S., & Aitken, W. M. (1995). Formation of 2-acetyl-1-pyrolline by several Bacillus cereus strains isolated from cocoa fermentation boxes. Journal of Agricultural and Food Chemistry, 43, 496–475.CrossRefGoogle Scholar
  13. 13.
    Thimmaraju, R., Bhagyalakshmi, N., Narayan, M. S., Venkatachalam, L., & Ravishankar, G. A. (2005). In vitro culture of Pandanus amaryllifolius and enhancement of 2-acetyl-1-pyrroline, the major flavouring compound of aromatic rice, by precursor feeding of L-proline. Journal of the Science of Food and Agriculture, 85, 2527–2534.CrossRefGoogle Scholar
  14. 14.
    Yoshihashi, T. N., Huong, T. T., & Inatomi, H. (2002). Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. Journal of Agricultural and Food Chemistry, 50, 2001–2004.CrossRefGoogle Scholar
  15. 15.
    Suprasanna, P., Bharati, G., Ganapathi, T. R., & Bapat, V. A. (2002). Aroma in rice: effects of proline supplementation and immobilization of callus cultures. Rice Genetics Newsletter, 19, 9–12.Google Scholar
  16. 16.
    Huang, T. C., Huang, Y. W., Hung, H. J., Ho, C. T., & Wu, M. L. (2007). Δ1-Pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilisssp. Natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline. Journal of Agricultural and Food Chemistry, 55, 5097–5102.CrossRefGoogle Scholar
  17. 17.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  18. 18.
    Hiei, Y., Komari, T., & Kubo, T. (1997). Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, 35, 205–218.CrossRefGoogle Scholar
  19. 19.
    Stachel, S. E., Messens, E., Montagu, M. V., & Zambryski, P. C. (1985). Identification of the signal molecules produced by wounded plants cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318, 624–629.CrossRefGoogle Scholar
  20. 20.
    Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907.Google Scholar
  21. 21.
    Yamchi, A., Jazii, R. F., Ghobadi, C., Mousavi, A., & Karkhanehee, A. A. (2005). Increasing of tolerance to osmotic stresses in Tobacco (Nicotiana tabacum cv. Xanthi) through overexpression of P5CS gene. Journal of Science and Technology of Agriculture and Natural Resources, 8(4), 31–40.Google Scholar
  22. 22.
    Doyle, J., & Doyle, J. (1987). A rapid DNA isolation procedure for small amount of fresh leaf tissue. Physics Bulletin, 5, 547–555.Google Scholar
  23. 23.
    Kavi kashor, P. B., Hong, Z., Miao, G., Chein, H., & Verma, D. (1995). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108, 1387–1394.Google Scholar
  24. 24.
    Bates, L. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.CrossRefGoogle Scholar
  25. 25.
    Mathure, S. V., Wakte, K. V., Jawali, N., & Nadaf, A. B. (2011). Quantification of 2-acetyl-1-pyrroline and other rice aroma volatiles among Indian scented rice cultivars by HS-SPME/GC-FID. Food Analytical Methods, 4(3), 326–333.CrossRefGoogle Scholar
  26. 26.
    Mahatheeranont, S., Keawsaard, S., & Dumri, K. (2001). Quantification of the rice aroma compound, 2-acetyl-l-pyrroline, in uncooked Khao Dawk Mali 105 brown rice. Journal of Agricultural and Food Chemistry, 49, 773–779.CrossRefGoogle Scholar
  27. 27.
    Wakte, K. V., Thengane, R. J., Jawali, N., & Nadaf, A. B. (2010). Optimization of HS-SPME condition for quantification of 2-acetyl-1-pyrroline and study of other volatiles in Pandanus amaryllifolius Roxb. Food Chemistry, 121, 595–600.CrossRefGoogle Scholar
  28. 28.
    Grimm, C., Bergman, C., Delgado, J., & Bryant, R. (2001). Screening for 2-acetyl-1-pyrroline in the headspace of rice using SPME/GC-MS. Journal of Agricultural and Food Chemistry, 49, 245–249.CrossRefGoogle Scholar
  29. 29.
    Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci., 2, 21–25.CrossRefGoogle Scholar
  30. 30.
    Noor, A., Hamid, R., Chaudhry, Z., & Mirza, B. (2005). High frequency regeneration from scutellum derived calli of basmati rice cv. Basmati 385 and super basmati. Pakistan Journal of Botany, 37(3), 673–684.Google Scholar
  31. 31.
    Kumar, V., Shriram, V., Kavi Kishor, P. B., Jawali, N., & Shitole, M. G. (2010). Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnology Reports, 4, 37–48.CrossRefGoogle Scholar
  32. 32.
    Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of T-DNA. The Plant Journal, 6, 271–282.CrossRefGoogle Scholar
  33. 33.
    Yamchi, A., Jazii, R. F., Mousavi, A., Karkhane, A. A., & Renu, S. (2007). Proline accumulation in transgenic tobacco as a result of expression of arabidopsis Δ1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress. Journal of Plant Biochemistry and Biotechnology, 16(1), 9–15.CrossRefGoogle Scholar
  34. 34.
    Rashid, H., Yokoi, S., Torizama, K., & Hinata, K. (1996). Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Reports, 15, 727–730.CrossRefGoogle Scholar
  35. 35.
    Hoque, M. E., Mansfield, J. M., & Bennett, M. H. (2005). Agrobacterium-mediated transformation of indica rice genotypes: an assessment of factors affecting the transformation efficiency. Plant Cell, Tissue and Organ, 82, 45–55.CrossRefGoogle Scholar
  36. 36.
    Ignacimuthu, S., & Arockiasamy, S. (2006). Agrobacterium-mediated transformation of an elite indica rice for insect resistance. Current Science, 90(6), 829–835.Google Scholar
  37. 37.
    Zhu, B., Su, J., Chang, M., Verma, D. P. S., Fan, Y. L., & Wu, R. (1998). Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt stress in transgenic rice. Plant Science, 139, 41–48.CrossRefGoogle Scholar
  38. 38.
    Wu, M. L., Chou, K. L., Wu, C. R., Chen, J. K., & Huang, T. C. (2009). Characterization and the possible formation mechanism of 2-acetyl-1-pyrroline in aromatic vegetable soybean (Glycine max L.). Journal of Food Science, 74(5), S192–S197.CrossRefGoogle Scholar
  39. 39.
    Sawahel, W. A., & Hassan, A. H. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters, 24, 721–725.CrossRefGoogle Scholar
  40. 40.
    Paule, C. M., & Powers, J. J. (1989). Sensory and chemical examination aromatic and non aromatic rices. Journal of Food Science, 54, 343–346.CrossRefGoogle Scholar
  41. 41.
    Buttery, R. G., Turnbaugh, J. G., & Ling, L. C. (1988). Contributions of volatiles to rice aroma. Journal of Agricultural and Food Chemistry, 36, 1006–1009.CrossRefGoogle Scholar
  42. 42.
    Widjaja, R., Craske, J., & Wooton, M. (1996). Comparative studies on volatile components of non-fragrant and fragrant rices. Journal of the Science of Food and Agriculture, 70, 151–161.CrossRefGoogle Scholar
  43. 43.
    Bergman, C. J., Delgado, J. T., Bryant, R., Grimm, C., Cadwallader, K. R., & Webb, B. D. (2000). Rapid gas chromatographic technique for quantifying 2-acetyl-1-pyrroline and hexanal in rice (Oryza sativa, L.). Cereal Chemistry, 77(4), 454–458.CrossRefGoogle Scholar
  44. 44.
    Yajima, I., Yanai, T., & Nakamura, M. (1978). Volatile flavour components of cooked rice. Agricultural and Biological Chemistry, 42, 1229–1233.CrossRefGoogle Scholar
  45. 45.
    Yajima, I., Yanai, T., Nakamura, M., Sakakibara, H., & Hayaski, K. (1979). Volatile flavour components of cooked Kaorimai scented rice. Agricultural and Biological Chemistry, 43, 2425–2430.CrossRefGoogle Scholar
  46. 46.
    Bullard, R. W., & Holguin, G. (1977). Volatile components of unprocessed rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 25, 99–103.CrossRefGoogle Scholar
  47. 47.
    Kato, H., Ohta, T., Tsugita, T., & Hosaka, Y. (1983). Effect of parboiling on texture and flavor components of cooked rice. Journal of Agricultural and Food Chemistry, 31, 818–823.CrossRefGoogle Scholar
  48. 48.
    Mezl, V. A., & Knox, W. (1976). Properties and analysis of a stable derivative of pyrroline-5-carboxylic acid for use in metabolic studies. Analytical Biochemistry, 74, 430–440.CrossRefGoogle Scholar
  49. 49.
    Kavi Kishor, P. B., Sangams, S., Amrutha, R. N., Srilaxmi, P., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.Google Scholar
  50. 50.
    Bradbury, L. M. T., Fitzgerald, T. L., Henry, R. J., Jin, Q., & Waters, D. L. E. (2005). The gene for fragrance in rice. Plant Biotechnology Journal, 3, 363–370.CrossRefGoogle Scholar
  51. 51.
    Chen, S., Yang, Y., Shi, W., Ji, Q., He, F., Zhang, Z., Cheng, Z., Liu, X., & Xu, M. (2008). Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. The Plant Cell, 20, 1850–1861.CrossRefGoogle Scholar
  52. 52.
    Bourgis, F., Guyot, R., Gherbi, H., Tailliez, E., Amabile, I., Salse, J., Lorieux, M., Delseny, M., & Ghesquiere, A. (2008). Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. Theoretical and Applied Genetics, 117, 353–368.CrossRefGoogle Scholar
  53. 53.
    Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., & Shinozaki, K. (1997). Characterization of the gene for D1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and the salt tolerance in Oryza sativa L. Plant Molecular Biology, 33, 857–865.CrossRefGoogle Scholar
  54. 54.
    Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4, 215–223.CrossRefGoogle Scholar
  55. 55.
    Hare, P. D., Cress, W. A., & Staden, V. (1998). Dissecting the role of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535–553.CrossRefGoogle Scholar
  56. 56.
    Singh, R. K., Singh, U. S., & Khush, G. S. (2000). Aromatic rices. New Delhi:Oxford & IBH Publishing Co. Pvt. Ltd..Google Scholar
  57. 57.
    Fitzgerald, T. L., Waters, D. L. E., Brooks, L. O., & Henry, R. J. (2010). Fragrance in rice (Oryza sativa) is associated with reduced yield under salt treatment. Environmental and Experimental Botany, 68, 292–300.CrossRefGoogle Scholar
  58. 58.
    Nadaf, A. B., Wakte, K. V., & Zanan, R. L. (2014). 2-acetyl-1-pyrroline biosynthesis: from fragrance to a rare metabolic disease. Journal of Plant Science Research, 1(1), 102.Google Scholar
  59. 59.
    Wijerathna, Y. M. A. M., Kottearachchi, N. S., Gimhani, D. R., & Sirisena, D. N. (2014). Exploration of relationship between fragrant gene and growth performances of fragrant rice (Oryza sativa L.) seedlings under salinity stress. JEBAS, 2(1), 7–12.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kayghobad Kaikavoosi
    • 1
  • Trupti D. Kad
    • 1
  • Rahul L. Zanan
    • 1
  • Altafhusain B. Nadaf
    • 1
    Email author
  1. 1.Department of BotanySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations