Advertisement

Applied Biochemistry and Biotechnology

, Volume 177, Issue 7, pp 1456–1465 | Cite as

Production of Herbicide-Resistant Medicinal Plant Salvia miltiorrhiza Transformed with the Bar Gene

  • Yu Liu
  • Shi Xin Yang
  • Yan Cheng
  • Dong Qing Liu
  • Yong Zhang
  • Ke Jun Deng
  • Xue Lian ZhengEmail author
Article

Abstract

In this study, we successfully performed Agrobacterium-mediated genetic transformation of Salvia miltiorrhiza and produced herbicide-resistant transformants. Leaf discs of S. miltiorrhiza were infected with Agrobacterium tumefaciens EHA105 harboring pCAMBIA 3301. The pCAMBIA 3301 includes an intron-containing gus reporter and a bar selection marker. To increase stable transformation efficiency, a two-step selection was employed which consists of herbicide resistance and gus expression. Here, we put more attention to the screening step of herbicide resistance. The current study provides an efficient screening system for the transformed plant of S. miltiorrhiza harboring bar gene. To determine the most suitable phosphinothricin concentration for plant selection, non-transformed leaf discs were grown on selection media containing six different phosphinothricin concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0 mg/l). Based on the above results of non-transformed calluses, the sensitivity of phosphinothricin (0, 0.4, 0.8, 1.2, 1.6 mg/l) was tested in the screening of transgenic S. miltiorrhiza. We identified that 0.6 mg/l phosphinothricin should be suitable for selecting putatively transformed callus because non-transformed callus growth was effectively inhibited under this concentrations. When sprayed with Basta, the transgenic S. miltiorrhiza plants were tolerant to the herbicide. Hence, we report successful transformation of the bar gene conferring herbicide resistance to S. miltiorrhiza.

Keywords

Salvia miltiorrhiza Agrobacterium tumefaciens Leaf discs Bar Gene herbicide-resistant 

Abbreviations

S. miltiorrhiza

Salvia miltiorrhiza

A. tumefaciens

Agrobacterium tumefaciens

MS salts

Murashige and Skoog salts

CaMV 35S

Cauliflower mosaic virus 35S promoter

LB

Luria-Bertani broth

GUS

β-Glucuronidase

Notes

Acknowledgments

This work was supported by a grant from the Sichuan Provincial Science and Technology Department (no. 2011NZ0098-12-02) to DKJ and ZXL.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no competing interests.

Supplementary material

12010_2015_1826_Fig6_ESM.ppt (251 kb)
Supplement Figure. 1 PCR analysis of Gus gene from genomic DNA of the sterile transgenic plantlets sub-cultured for 6 times (a) and cultured for 6 months in soil after a 3-time sub-culture (b) separately. M, DNA marker 2000; 25, 26, 27 transgenic lines induced by A. tumefaciens harboring pCAMBIA 3301; P, binary vector pCAMBIA 3301; WT, DNA of the normal S. miltiorrhiza. (PPT 251 kb)

References

  1. 1.
    Chai, B., & Sticklen, M. B. (1998). Applications of biotechnology in turfgrass genetic improvement. Crop Science, 38, 1320–1338.CrossRefGoogle Scholar
  2. 2.
    Chai, M. I., Wang, B. I., Kim, J. Y., Lee, J. M., & Kim, D.-H. (2003). Agrobacterium-mediated transformation of herbicide resistance in creeping bentgrass and colonial bentgrass. Journal of Zhejiang University SCIENCE A, 4, 346–351.CrossRefGoogle Scholar
  3. 3.
    Chai, M., Senthil, K., & Kim, D. (2004). Transgenic plants of colonial bentgrass from embryogenic callus via Agrobacterium-mediated transformation. Plant Cell, Tissue and Organ Culture, 77, 165–171.CrossRefGoogle Scholar
  4. 4.
    Chen, H., Yuan, J.-P., Chen, F., Zhang, Y.-L., & Song, J.-Y. (1997). Tanshinone production in Ti-transformed Salvia miltiorrhiza cell suspension cultures. Journal of Biotechnology, 58, 147–156.CrossRefGoogle Scholar
  5. 5.
    Choi, H. J., Chandrasekhar, T., Lee, H.-Y., & Kim, K.-M. (2007). Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method. Plant Cell, Tissue and Organ Culture, 91, 235–242.CrossRefGoogle Scholar
  6. 6.
    Dong, S., & Qu, R. (2005). High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Science, 168, 1453–1458.CrossRefGoogle Scholar
  7. 7.
    Fu, D., Tisserat, N. A., Xiao, Y., Settle, D., Muthukrishnan, S., & Liang, G. H. (2005). Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Science, 168, 671–680.CrossRefGoogle Scholar
  8. 8.
    Fu, D., Xiao, Y., Muthukrishnan, S., & Liang, G. H. (2005). In vivo performance of a dual genetic marker, manA-gfp, in transgenic bentgrass. Genome, 48, 722–730.CrossRefGoogle Scholar
  9. 9.
    Ge, Y., Cheng, X., Hopkins, A., & Wang, Z.-Y. (2007). Generation of transgenic Lolium temulentum plants by Agrobacterium tumefaciens-mediated transformation. Plant Cell Reports, 26, 783–789.CrossRefGoogle Scholar
  10. 10.
    Ge, Y., Norton, T., & Wang, Z.-Y. (2006). Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Reports, 25, 792–798.CrossRefGoogle Scholar
  11. 11.
    Gu, X.-C., Chen, J.-F., Xiao, Y., Di, P., Xuan, H.-J., Zhou, X., Zhang, L., & Chen, W.-S. (2012). Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza. Plant Cell Reports, 31, 2247–2259.CrossRefGoogle Scholar
  12. 12.
    Guillon, S., Trémouillaux-Guiller, J., Pati, P. K., Rideau, M., & Gantet, P. (2006). Hairy root research: recent scenario and exciting prospects. Current Opinion in Plant Biology, 9, 341–346.CrossRefGoogle Scholar
  13. 13.
    Han, N., Chen, D., Bian, H.-W., Deng, M.-J., & Zhu, M.-Y. (2005). Production of transgenic creeping bentgrass Agrostis stolonifera var. palustris plants by Agrobacterium tumefaciens-mediated transformation using hygromycin selection. Plant Cell, Tissue and Organ Culture, 81, 131–138.CrossRefGoogle Scholar
  14. 14.
    Ho, H.-S., Vishwakarma, R. K., Chen, E. C.-F., & Tsay, H.-S. (2013). Activation tagging in Salvia miltiorrhiza can cause increased leaf size and accumulation of tanshinone I and IIA in its roots. Botanical Studies, 54, 37.CrossRefGoogle Scholar
  15. 15.
    Horsch, R., Fry, J., Hoffmann, N., Eichholtz, D., Rogers, S. A., & Fraley, R. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.CrossRefGoogle Scholar
  16. 16.
    Huang, L., Dai, Z., Lv, D. and Yuan, Y. (2009) [Discuss on model organism and model for geoherbs’ study]. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica, 34, 1063–1066.Google Scholar
  17. 17.
    Huang, L., Liu, D., & Hu, Z. (2000). [Effects of phytohormones on growth and content of depsides in Salvia miltiorrhiza suspension cells]. Zhong yao cai= Zhongyaocai=Journal of Chinese Medicinal materials, 23, 1–4.Google Scholar
  18. 18.
    Kim, S. J., Lee, J.-Y., Kim, Y.-M., Yang, S.-S., Hwang, O.-J., Hong, N.-J., Kim, K.-M., Lee, H.-Y., Song, P.-S., & Kim, J.-I. (2007). Agrobacterium-mediated high-efficiency transformation of creeping bentgrass with herbicide resistance. Journal of Plant Biology, 50, 577–585.CrossRefGoogle Scholar
  19. 19.
    Lee, C.-Y., Agrawal, D. C., Wang, C.-S., Yu, S.-M., Chen, J. J., & Tsay, H.-S. (2008). T-DNA activation tagging as a tool to isolate Salvia miltiorrhiza transgenic lines for higher yields of tanshinones. Planta Medica, 74, 780.CrossRefGoogle Scholar
  20. 20.
    Lee, L. (1996). Turfgrass biotechnology. Plant Science, 115, 1–8.CrossRefGoogle Scholar
  21. 21.
    Lohar, D. P., Schuller, K., Buzas, D. M., Gresshoff, P. M., & Stiller, J. (2001). Transformation of Lotus japonicus using the herbicide resistance bar gene as a selectable marker. Journal of Experimental Botany, 52, 1697–1702.CrossRefGoogle Scholar
  22. 22.
    Lutz, K. A., Knapp, J. E., & Maliga, P. (2001). Expression of bar in the plastid genome confers herbicide resistance. Plant Physiology, 125, 1585–1590.CrossRefGoogle Scholar
  23. 23.
    Manickavasagam, M., Ganapathi, A., Anbazhagan, V., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Reports, 23, 134–143.CrossRefGoogle Scholar
  24. 24.
    Ono, N. N., & Tian, L. (2011). The multiplicity of hairy root cultures: prolific possibilities. Plant Science, 180, 439–446.CrossRefGoogle Scholar
  25. 25.
    Sarria, R., Torres, E., Angel, F., Chavarriaga, P., & Roca, W. M. (2000). Transgenic plants of cassava (Manihot esculenta) with resistance to Basta obtained by Agrobacterium-mediated transformation. Plant Cell Reports, 19, 339–344.CrossRefGoogle Scholar
  26. 26.
    Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., & Botterman, J. (1987). Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. The EMBO Journal, 6, 2519.Google Scholar
  27. 27.
    Wang, K., Luo, Q., & Cheng, H. (1998). [Production of allochtonic formations in callus cells of Salvia miltiorrhiza Bge.]. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi=China Journal of Chinese Materia Medica, 23(592–594), 638.Google Scholar
  28. 28.
    Wang, Z.-Y., & Ge, Y. (2005). Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). Journal of Plant Physiology, 162, 103–113.CrossRefGoogle Scholar
  29. 29.
    Wang, Z.-Y., & Ge, Y. (2006). Recent advances in genetic transformation of forage and turf grasses. In Vitro Cellular & Developmental Biology-Plant, 42, 1–18.CrossRefGoogle Scholar
  30. 30.
    Wang, Z., Hopkins, A., & Mian, R. (2001). Forage and turf grass biotechnology. Critical Reviews in Plant Sciences, 20, 573–619.CrossRefGoogle Scholar
  31. 31.
    Wu, J.-Y., & Shi, M. (2008). Ultrahigh diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots. Applied Microbiology and Biotechnology, 78, 441–448.CrossRefGoogle Scholar
  32. 32.
    Yan, Y. P., & Wang, Z. Z. (2007). Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell, Tissue and Organ Culture, 88, 175–184.CrossRefGoogle Scholar
  33. 33.
    Yu, T., Skinner, D., Liang, G., Trick, H., Huang, B., & Muthukrishnan, S. (2001). Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas, 133, 229–223.CrossRefGoogle Scholar
  34. 34.
    Yuan, J., Tao, L., & Xu, J. (1989). Immobilization of callus tissue cells of Salvia miltiorrhiza and the characteristics of their products. Chinese Journal of Biotechnology, 6, 199–205.Google Scholar
  35. 35.
    Zhang, Y., Song, J., Qi, J., & Lu, G. (1997). [The plant regeneration of Salvia miltiorrhiza Bge. transformed by Agrobacterium]. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi=China Journal of Chinese Materia Medica, 22(274–275), 318.Google Scholar
  36. 36.
    Zhang, Y., Song, J., Zhao, B., & Liu, H. (1994). Crown gall culture and production of tanshinone in Salvia miltiorrhiza. Chinese Journal of Biotechnology, 11, 137–141.Google Scholar
  37. 37.
    Zhang, Y., Yan, Y.-P., Wu, Y.-C., Hua, W.-P., Chen, C., Ge, Q., & Wang, Z.-Z. (2014). Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metabolic Engineering, 21, 71–80.CrossRefGoogle Scholar
  38. 38.
    Zhong, H., Bolyard, M. G., Srinivasan, C., & Sticklen, M. B. (1993). Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Reports, 13, 1–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yu Liu
    • 1
  • Shi Xin Yang
    • 1
  • Yan Cheng
    • 1
  • Dong Qing Liu
    • 1
  • Yong Zhang
    • 1
  • Ke Jun Deng
    • 1
  • Xue Lian Zheng
    • 1
    Email author
  1. 1.ChengduChina

Personalised recommendations