Applied Biochemistry and Biotechnology

, Volume 177, Issue 5, pp 1099–1114 | Cite as

Lactic Acid and Biosurfactants Production from Residual Cellulose Films

  • Oscar Manuel Portilla RiveraEmail author
  • Guillermo Arzate Martínez
  • Lorenzo Jarquín Enríquez
  • Pedro Alberto Vázquez Landaverde
  • José Manuel Domínguez GonzálezEmail author


The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6 % (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49 % of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50 % of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.


Residual cellulose films Acid hydrolysis Glucose Lactic acid Biosurfactants 



Authors are grateful to Programa de Mejoramiento del Profesorado (PROMEP) for the financial support of this work by the grant PROMEP/103.5/11/6945.

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Poggi, S. T., & Hidazi, G. R. (2002). Method for viscose production. US Patent, 6392033, B1.Google Scholar
  2. 2.
    Sreenath, H. K., & Jeffries, T. W. (2011). Interactions of fungi from fermented sausage with regenerated cellulose casings. Journal of Industrial Microbiology and Biotechnology, 38, 1793–1802.CrossRefGoogle Scholar
  3. 3.
    Sreenath, H. K., & Koegel, R. G. (2008). Bioconversion of spent cellulose sausage casings. Enzyme and Microbial Technology, 43, 226–232.CrossRefGoogle Scholar
  4. 4.
    Sanders, D. A., Belyea, R. L., & Taylor, T. A. (2000). Degradation of spent casings with commercial cellulases. Bioresource Technology, 71, 125–131.CrossRefGoogle Scholar
  5. 5.
    Gentry, J. L., Hussein, H. S., Berger, L. L., & Fahey Jr., G. C. (1996). Spent cellulose casings as potential feed ingredients for ruminants. Journal of Animal Science, 74, 663–671.Google Scholar
  6. 6.
    Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits. Applied Microbiology and Biotechnology, 85, 413–423.CrossRefGoogle Scholar
  7. 7.
    Abdel – Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Advances, 31, 877–902.Google Scholar
  8. 8.
    Abdel – Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286–301.Google Scholar
  9. 9.
    Laopaiboon, P., Thani, A., Leelavatcharamas, V., & Laopaiboon. L. (2010). Acid hydrolysis of sugar cane bagasse for lactic acid production. Bioresource Technology, 101, 1036–1043.Google Scholar
  10. 10.
    Pacwa-Plociniczak, M., Plaza, G. A., Potrowska – Saget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Science, 12, 633–654.Google Scholar
  11. 11.
    Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters of Applied Microbiology, 50, 419–424.CrossRefGoogle Scholar
  12. 12.
    Madhu, A. N., & Prapulla, S. G. (2014). Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Applied Biochemistry and Biotechnology, 172, 1777–1789.CrossRefGoogle Scholar
  13. 13.
    Campos, J. M., Montenegro Stamford, T. L., Sarubbo, L. A., de Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29, 1097–1108.CrossRefGoogle Scholar
  14. 14.
    Rodrigues, L., Moldes, A., Teixeira, J., & Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 28, 109–116.CrossRefGoogle Scholar
  15. 15.
    Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 1, 1–19.Google Scholar
  16. 16.
    Vially, G., Marchal, R., & Guilbert, N. (2010). L(+) lactate production from carbohydrates and lignocellulosic materials by Rhizopus oryzae UMIP 4.77. World Journal of Microbiology and Biotechnology, 26, 607–614.CrossRefGoogle Scholar
  17. 17.
    Bustos, G., de la Torre, N., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2007). Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L. pentosus. Journal of Food Engineering, 78, 405–412.CrossRefGoogle Scholar
  18. 18.
    Portilla-Rivera, O. M., Moldes, A. B., Torrado, A. M., & Domínguez, J. M. (2007). Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochemistry, 42, 1010–1020.CrossRefGoogle Scholar
  19. 19.
    Moldes, A. B., Torrado, A., Barral, M. T., & Domínguez, J. M. (2007). Evaluation of biosurfactant production from various agricultural residues by L. pentosus. Journal of Agricultural and Food Chemistry, 55, 4481–4486.CrossRefGoogle Scholar
  20. 20.
    Portilla-Rivera, O. M., Torrado, A., Carballo, J., Domínguez, J. M., & Moldes, A. B. (2009). Development of a factorial design to study the effect of the major hemicellulosic sugars on the production of surface-active compounds by L. pentosus. Journal of Agricultural and Food Chemistry, 57, 9057–9062.CrossRefGoogle Scholar
  21. 21.
    Rodríguez, N., Torrado, A., Cortés, S., & Domínguez, J. M. (2010). Use of waste materials for Lactococcus lactis development. Journal of Science and Food Agriculture, 90, 1726–1734.CrossRefGoogle Scholar
  22. 22.
    Rodríguez, N., Salgado, J. M., Cortés, S., & Domínguez, J. M. (2013). Biotechnological production of phenyllactic acid and biosurfactants from trimming wine shoots hydrolyzates by microbial coculture fermentation. Applied Biochemistry and Biotechnology, 169, 2175–2188.CrossRefGoogle Scholar
  23. 23.
    John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524–534.CrossRefGoogle Scholar
  24. 24.
    Viikari, H. L., Mustranta, E. A., Ojamo, L. O., Itävaara, K. M., & Johansson, T. T. (1998). Method of dissolution of sausage skins and other cellulosic substances by means of an enzyme solution. US Patent, 5814515.Google Scholar
  25. 25.
    Bustos, G., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2004). Evaluation of vinification lees as a general medium for Lactobacillus strains. Journal of Agricultural and Food Chemistry, 52, 5233–5239.CrossRefGoogle Scholar
  26. 26.
    Kim, S., Lim, E., Lee, S., Lee, J., & Lee, T. (2000). Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnology and Applied Biochemistry, 31, 249–253.CrossRefGoogle Scholar
  27. 27.
    Gurgel, L. V. A., Marabezi, K., Zanbom, M. D., & Curvelo, A. A. D. S. (2012). Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Industrial and Engineering Chemistry Research, 51, 1173–1185.Google Scholar
  28. 28.
    Dussán, K. J., Silva, D. D. V., Moraes, E. J. C., Arruda, P. V., & Felipe, M. G. A. (2014). Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chemical Engineering Transactions, 38, 433–438.Google Scholar
  29. 29.
    Ruel, K., Nishiyama, Y., & Joseleau, J. (2012). Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Science, 193-194, 48–61.CrossRefGoogle Scholar
  30. 30.
    Sun, Q., Foston, M., Meng, X., Sawada, D., Pingali, S. V., O’Neill, H. M., Li, H., Wyman, C. E., Langun, P., Ragauskas, A. J., & Kumar, R. R. (2014). Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnology for Biofuels, 150, 1–14.Google Scholar
  31. 31.
    Moldes, A. B., Alonso, J. L., & Parajó, J. C. (2001). Resin selection and single-step production and recovery of lactic acid from pretreated wood. Applied Biochemistry and Biotechnolgoy, 95, 69–81.CrossRefGoogle Scholar
  32. 32.
    Van der Vegt, W., Van der Mei, H. C., Noordmans, J., & Busscher, H. J. (1991). Assessment of bacterial biosurfactant production through axisymmetric drop shape analysis by profile. Applied Microbiology and Biotechnology, 35, 766–770.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Oscar Manuel Portilla Rivera
    • 1
    Email author
  • Guillermo Arzate Martínez
    • 2
  • Lorenzo Jarquín Enríquez
    • 2
  • Pedro Alberto Vázquez Landaverde
    • 3
  • José Manuel Domínguez González
    • 4
    Email author
  1. 1.Coordinación Académica Región Huasteca SurUniversidad Autónoma de San Luis PotosíTamazunchaleMéxico
  2. 2.Ingeniería AgroindustrialUniversidad Politécnica de GuanajuatoCortázarMéxico
  3. 3.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional Unidad QuerétaroQuerétaroMéxico
  4. 4.Chemical Engineering Department, Faculty of SciencesUniversity of Vigo (Campus Ourense), Ourense, Spain and Agro-Food Biotechnology Laboratory, CITI—Research, Transfer and Innovation Centre, Technological Park of GaliciaOurenseSpain

Personalised recommendations