Advertisement

Applied Biochemistry and Biotechnology

, Volume 177, Issue 5, pp 1083–1098 | Cite as

Characterization of Inulin Hydrolyzing Enzyme(s) in Oleaginous Yeast Trichosporon cutaneum in Consolidated Bioprocessing of Microbial Lipid Fermentation

  • Juan Wang
  • Huizhan ZhangEmail author
  • Jie BaoEmail author
Article

Abstract

Oleaginous yeast Trichosporon cutaneum CGMCC 2.1374 was found to utilize inulin directly for microbial lipid fermentation without a hydrolysis step. The potential inulinase-like enzyme(s) in T. cutaneum CGMCC 2.1374 were characterized and compared with other inulinase enzymes produced by varied yeast strains. The consolidated bioprocessing (CBP) for lipid accumulated using inulin was optimized with 4.79 g/L of lipid produced from 50 g/L inulin with the lipid content of 33.6 % in dry cells. The molecular weight of the enzyme was measured which was close to invertase in Saccharomyces cerevisiae. The study provided information for inulin hydrolyzing enzyme(s) in oleaginous yeasts, as well as a preliminary CBP process for lipid production from inulin feedstock.

Keywords

Inulin hydrolyzing enzyme Trichosporon cutaneum Dry cell weight Lipid production Consolidated bioprocessing 

Notes

Acknowledgments

This research was supported by the National Basic Research Program of China (2011CB707406) and the National High-Tech Program of China (2012AA022301, 2014AA021901).

References

  1. 1.
    Zhao, C. H., Cui, W., Liu, X. L., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metabolic Engineering., 6(12), 510–517.CrossRefGoogle Scholar
  2. 2.
    Meng, X., Yang, J. M., Xu, X., Zhang, L., Nie, Q. J., Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy 1(34): 1–5.Google Scholar
  3. 3.
    Zhao, C. H., Chi, Z., Zhang, F., Guo, F. J., Li, M., Song, W. B., & Chi, Z. M. (2011). Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresource Technology., 10(102), 6128–6133.CrossRefGoogle Scholar
  4. 4.
    Donot, F., Fontana, A., Baccou, J. C., Strub, C., & Schorr-Galindo, S. (2014). Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass and Bioenergy, 68, 135–150.CrossRefGoogle Scholar
  5. 5.
    Lynd L. R, Laser M. S, Brandsby D., Dale B. E., Davison B. (2008). How biotech can transform biofuels. Nature Biotechnology. 2(26): 169–172.Google Scholar
  6. 6.
    Chi, Z. M., Chi, Z., Zhang, T., Liu, G. L., & Yue, L. X. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology Biotechnology., 2(82), 211–220.CrossRefGoogle Scholar
  7. 7.
    Marzena, J. K., Karolina, L. T., & Stanislaw, B. (2003). Identification of the gene for β-fructofuranosidase of Bifidobacterium lactis DSM10140T and characterization of the enzyme expressed in Escherichia coli. Current Microbiology., 6(46), 391–397.Google Scholar
  8. 8.
    Yuna, B., Wang, S. A., & Li, F. L. (2013). Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresource Technology., 139, 402–405.CrossRefGoogle Scholar
  9. 9.
    An, K. H., Hu, F. X., & Bao, J. (2013). Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid. Applied Microbiology Biotechnology., 8(171), 2093–2104.Google Scholar
  10. 10.
    Schorr-Galindo, S., Ghommidh, C., & Guiraud, J. P. (2000). Influence of yeast flocculation on the rate of Jerusalem artichoke extract fermentation. Current Microbiology, 2(41), 89–95.CrossRefGoogle Scholar
  11. 11.
    Dao, T. H., Zhang, J., & Bao, J. (2013). Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresource Technology., 148, 157–162.CrossRefGoogle Scholar
  12. 12.
    Zhao, C. H., Zhang, T., Li, M., & Chi, Z. M. (2010). Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry., 7(45), 1121–1126.CrossRefGoogle Scholar
  13. 13.
    Lane, M. M., & Morrissey, J. P. (2010). Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biology reviews, 1-2(24), 17–26.CrossRefGoogle Scholar
  14. 14.
    Wang, Y. M., Liu, W., & Bao, J. (2012). Repeated batch fermentation with water recycling and cell separation for microbial lipid production. Frontiers of Chemical Science and Engineering., 4(6), 453–460.CrossRefGoogle Scholar
  15. 15.
    Wang, S. A., & Li, F. L. (2013). Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Applied Environment Microbiology., 1(79), 403–406.CrossRefGoogle Scholar
  16. 16.
    Wang, Z. P., Fu, W. J., Xu, H. M., & Chi, Z. M. (2014). Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresource Technology., 161, 131–136.CrossRefGoogle Scholar
  17. 17.
    Chu, D. Q., Zhang, J., & Bao, J. (2012). Simultaneous saccharification and ethanol fermentation of corn Stover at high temperature and high solids loading by a thermotolerant strain Saccharomyces cerevisiae DQ1. Bioenerg. Res., 4(5), 1020–1026.CrossRefGoogle Scholar
  18. 18.
    Folch, J., Lees, M., & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological Chemistry., 226, 497–509.Google Scholar
  19. 19.
    Gao, Q. Q., Cui, Z. Y., Zhang, J., & Bao, J. (2014). Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Bioresource Technology., 152, 552–556.CrossRefGoogle Scholar
  20. 20.
    Wang, J., Jin, Z. Y., Bo, J., & Adamu, A. (2003). Production and separation of exo- and endoinulinase from Aspergillus ficuum. Process Biochemistry, 1(39), 5–11.Google Scholar
  21. 21.
    Westphal, V., Marcusson, E. G., Winther, J. R., Emr, S. D., & van den Hazel, H. B. (1996). Multiple pathways for vacuolar sorting of yeast proteinase A. Journal of Biological Chemistry., 271, 11865–11870.CrossRefGoogle Scholar
  22. 22.
    Guo, L. H., Zhang, J., Hu, F. X., & Bao, J. (2013). Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Biotechnology Bioengineering., 10(110), 2606–2615.CrossRefGoogle Scholar
  23. 23.
    Kim, S., Park, J. M., & Kim, C. H. (2013). Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555. Applied Biochemistry and Biotechnology., 5(169), 1531–1545.CrossRefGoogle Scholar
  24. 24.
    Olmea, O., Chinea, G., Beldarrain, A., Marquez, G., Acosta, N., Rodriguez, L., & Valencia, A. (1998). Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins Structure Function & Bioinformatics., 3(33), 383–395.Google Scholar
  25. 25.
    Zhang, L. L., Tang, M. J., Liu, G. L., Wang, G. Y., & Chi, Z. M. (2015). Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production. Molecular Biotechnology, 4(57), 337–347.CrossRefGoogle Scholar
  26. 26.
    Goldman, D., Lavid, N., Schwartz, A., Shoham, G., Danino, D., & Shoham, Y. (2008). Two active forms of Zymomonas mobilis levansucrase: an ordered microfibril structure of the enzyme promotes levan polymerization. Journal of Biological Chemistry., 47(283), 32209–32217.CrossRefGoogle Scholar
  27. 27.
    Chaudhary, A., Gupta, L. K., Gupata, J. K., & Banerjee, U. C. (1996). Purification and properties of levanase from Rhodotorula sp. Journal of Biotechnology., 1(46), 55–61.CrossRefGoogle Scholar
  28. 28.
    Ali, S., & Haq, I. (2007). Kinetics of improved extracellular beta-D-fructofuranosidase fructohydrolase production by a derepressed Saccharomyces cerevisiae. Letters in Applied Microbiology., 2(45), 160–167.CrossRefGoogle Scholar
  29. 29.
    Kushi, R. T., Monti, R., & Cotiero, J. (2000). Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. Journal of Industrial Microbiology & Biotechnology, 2(25), 63–69.CrossRefGoogle Scholar
  30. 30.
    Laloux, O., Cassart, J. P., Delcour, J., Van, B. J., & Vandenhaute, J. (1991). Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Letters, 1(289), 64–68.CrossRefGoogle Scholar
  31. 31.
    Yu, X. J., Guo, N., Chi, Z. M., Gong, F., Sheng, J., & Chi, Z. (2009). Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochemical Engineering Journal., 3(43), 266–271.CrossRefGoogle Scholar
  32. 32.
    Williams, R. S., Trumbly, R. J., MacColl, R., Trimble, R. B., & Maley, F. (1985). Comparative properties of amplified external and internal invertase from the yeast SUC2 gene. Journal of Biological Chemistry., 24(260), 13334–13341.Google Scholar
  33. 33.
    Dujon, B., Sherman, D., Fischer, G., et al. (2004). Genome evolution in yeasts. Nature, 6995(430), 35–44.CrossRefGoogle Scholar
  34. 34.
    Agaphonov, M. O., Packeiser, A. N., Chechenova, M. B., Choi, E. S., & Ter-Avanesyan, M. D. (2001). Mutation of the homologue of GDP-mannose pyrophosphorylase alters cell wall structure, protein glycosylation and secretion in Hansenula polymorpha. Yeast, 5(18), 391–402.CrossRefGoogle Scholar
  35. 35.
    Bommareddy, R. R., Sabra, W., Maheshwari, G., & Zeng, A. P. (2015). Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microbial Cell Factories, 14, 36.CrossRefGoogle Scholar
  36. 36.
    Vajpeyi, S., & Chandran, K. (2015). Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids. Bioresource Technology., 188, 49–55.CrossRefGoogle Scholar
  37. 37.
    Sestric, R., Munch, G., Cicek, N., Sparling, R., & Levin, D. B. (2014). Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology., 164, 41–46.CrossRefGoogle Scholar
  38. 38.
    Ratledge C., Wynn J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology. 51: 1–51.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations