Applied Biochemistry and Biotechnology

, Volume 177, Issue 4, pp 923–939 | Cite as

Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid

  • G. Burgé
  • C. Saulou-Bérion
  • M. Moussa
  • B. Pollet
  • A. Flourat
  • F. Allais
  • V. Athès
  • H.E. Spinnler


The present study aims at comparing the performances of three Lactobacillus reuteri strains (DSM 20016, DSM 17938, and ATCC 53608) in producing 3-hydroxypropionic acid (3-HP) from glycerol and at exploring inhibition phenomena during this bioconversion. Differences were highlighted between the three strains in terms of 3-HP production yield, kinetics of substrate consumption, and metabolite production. With a maximal productivity in non-optimal conditions (free pH) around 2 g.L−1.h−1 of 3-HP and 4 g.L−1.h−1 of 3-hydroxypropionaldehyde (3-HPA) depending on the strain, this study confirmed the potential of L. reuteri for the biotechnological production of 3-HP. Moreover, the molar ratios of 3-HP to 1,3-propanediol (1,3-PDO) obtained for the three strains (comprised between 1.25 and 1.65) showed systematically a higher 3-HP production. From these results, the DSM 17938 strain appeared to be the most promising strain. The impact of glycerol bioconversion on the bacteria’s physiological state (a decrease of around 40 % in DSM 17938 cells showing an enzymatic activity after 3 h) and survival (total loss of cultivability after 2 or 3 h depending on the strains) was revealed and discussed. The effect of each metabolite on L. reuteri DSM 17938 was further investigated, displaying a drastic inhibition caused by 3-HPA, while 3-HP induced lower impact and only at acidic pH.


3-Hydroxypropionic acid Lactobacillus reuteri Glycerol bioconversion Inhibitory activity 



The authors thank Chandanie Hunter for correcting the English version of the manuscript.

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12010_2015_1787_MOESM1_ESM.doc (89 kb)
Online Resource 1 (DOC 89 kb)
12010_2015_1787_MOESM2_ESM.doc (55 kb)
Online Resource 2 (DOC 55 kb)
12010_2015_1787_MOESM3_ESM.doc (368 kb)
Online Resource 3 (DOC 368 kb)
12010_2015_1787_MOESM4_ESM.doc (374 kb)
Online Resource 4 (DOC 374 kb)


  1. 1.
    da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv., 27, 30–39.CrossRefGoogle Scholar
  2. 2.
    Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2009). Recent advances in the conversion of bioglycerol into value-added products. Eur. J. Lipid. Sci. Technol., 111, 788–799.CrossRefGoogle Scholar
  3. 3.
    Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green. Chem., 12, 539–554.CrossRefGoogle Scholar
  4. 4.
    Zhang, D., Hillmyer, M. A., & Tolman, W. B. (2004). A new synthetic route to poly[3-hydroxypropionic acid] (P[3-HP]): ring-opening polymerization of 3-HP macrocyclic esters. Macromol., 37, 8198–8200.CrossRefGoogle Scholar
  5. 5.
    Andreeßen, B., Lange, A. B., Robenek, H., & Steinbüchel, A. (2010a). Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl. Microbiol. Biotechnol., 76, 622–626.Google Scholar
  6. 6.
    Andreeßen, B., & Steinbüchel, A. (2010b). Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters. Appl. Environ. Microbiol., 76, 4919–4925.CrossRefGoogle Scholar
  7. 7.
    Heinrich, D., Andreeßen, B., Madkour, M. H., Al-Ghamd, M. A., Shabbaj, I. I., & Steinbüchel, A. (2013). From waste to plastic: synthesis of poly(3-hydroxypropionate). Appl. Environ. Microbiol., 79, 3582–3589.CrossRefGoogle Scholar
  8. 8.
    Gokarn, R.R., Selifonova, O.V., Jessen, H.J., Steven, J.G., Selmer, T., & Buckel, W. (2002). 3-hydroxypropionic acid and other organic compounds. Patent application no. PCT/US2002/42418 A2 (Cargill, Inc.).Google Scholar
  9. 9.
    Tsobanakis, P., Meng, X., & Abraham, T.W. (2009). Methods of manufacturing derivatives of beta-hydroxylic acids. Patent application no.PCT/US2009/0298144 A1 (Cargill, Inc.).Google Scholar
  10. 10.
    Lilga, M.A., White, J.F., Holladay, J.E., Zacher, A.H., Muzatko, D.S., & Orth, R.J. (2010). Method for conversion of β-hydroxy carbonyl compounds. Patent application no. PCT/US2007/687661 B2 (Battelle Memorial Institute).Google Scholar
  11. 11.
    Della Pina, C., Falletta, E., & Rossi, M. (2011). A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid. Green. Chem, 13, 1624–1632.CrossRefGoogle Scholar
  12. 12.
    Arceo, E., Marsden, P., Bergman, R. G., & Ellman, J. A. (2009). An efficient didehydroxylation method for the biomass-derived polyols glycerol and erythritol. Mechanistic studies of a formic acid-mediated deoxygenation. Chem. Commun., 23, 3357–3359.CrossRefGoogle Scholar
  13. 13.
    Luo, L. H., Seo, J. W., Baek, J. O., Oh, B. R., Heo, S., Hong, W. K., Kim, D. H., & Kim, C. H. (2011). Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl. Microbiol. Biotechnol., 89, 697–703.CrossRefGoogle Scholar
  14. 14.
    Kumar, V., Ashok, S., & Park, S. (2013a). Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv., 31, 945–961.CrossRefGoogle Scholar
  15. 15.
    Dishisha, T., Pereyra, L. P., Pyo, S. H., Britton, R. A., & Hatti-Kaul, R. H. (2014). Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb. Cell Fact., 13, 76–85.CrossRefGoogle Scholar
  16. 16.
    Ashok, S., Raj, S. M., Rathnasingh, C., & Park, S. (2011). Development of recombinant Klebsiella pneumoniae ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl. Microbiol. Biotechnol., 90, 1253–1265.CrossRefGoogle Scholar
  17. 17.
    Kumar, V., Sankaranarayanan, M., Durgapal, M., Zhou, S., Ko, Y., Ashok, S., Sarkar, R., & Park, S. (2013b). Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase. Bioresour. Technol., 135, 555–563.CrossRefGoogle Scholar
  18. 18.
    Kwak, S., Park, Y. C., & Seo, J. H. (2013). Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH. Bioresour. Technol., 135, 432–439.CrossRefGoogle Scholar
  19. 19.
    Kim, K., Kim, S. K., Park, Y. C., & Jin-Ho Seo, J. H. (2014). Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour. Technol., 156, 170–175.CrossRefGoogle Scholar
  20. 20.
    Jung, W. S., Kang, J. H., Chu, H. S., Choi, I. S., & Cho, K. M. (2014). Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metabol. Eng., 23, 116–122.CrossRefGoogle Scholar
  21. 21.
    Talarico, T. L., & Dobrogosz, W. J. (1990). Purification and characterization of glycerol dehydratase from Lactobacillus reuteri. Appl. Env. Microbiol., 56, 1195–1197.Google Scholar
  22. 22.
    Sriramulu, D. D., Liang, M., Hernandez-Romero, D., Raux-Deery, E., Lunsdorf, H., Parsons, J. B., Warren, M. J., & Prentice, M. B. (2008). Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol., 190, 4559–4567.CrossRefGoogle Scholar
  23. 23.
    Sardari, R. R. R., Dishisha, T., Pyo, S. H., & Hatti-Kaul, R. (2013a). Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during bio-transformation of glycerol. Biotechnol. Bioeng., 110, 1243–1248.CrossRefGoogle Scholar
  24. 24.
    Sardari, R. R. R., Dishisha, T., Pyo, S. H., & Hatti-Kaul, R. (2013b). Biotransformation of glycerol to 3-hydroxypropionaldehyde: Improved production by in situ complexation with bisulfate in a fed-batch mode and separation on anion exchanger. J. Biotechnol., 168, 534–542.CrossRefGoogle Scholar
  25. 25.
    Sabet-Azad, R., Linares-Pasten, J.A., Torkelson, L., Sardari, R.R.R., & Hatti-Kaul, R. (2013). Coenzyme A-acylating propionaldehyde dehydrogenase (PduP) from Lactobacillus reuteri: Kinetic characterization and molecular modeling. Enzyme Microb. Technol. 53, 235–242.Google Scholar
  26. 26.
    Stevens, M. J. A., Vollenweider, S., Meile, L., & Lacroix, C. (2011). 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microb. Cell Fact., 10, 61–69.CrossRefGoogle Scholar
  27. 27.
    Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y., Takizawa, T., Fukuoka, H., Yoshimura, T., Itoh, K., O’Sullivan, D. J., McKay, L. L., Ohno, H., Kikuchi, J., Masaoka, T., & Hattori, M. (2008). Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res., 15, 151–161.CrossRefGoogle Scholar
  28. 28.
    Vollenweider, S., & Lacroix, C. (2004). 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl. Microbiol. Biotechnol., 64, 16–27.CrossRefGoogle Scholar
  29. 29.
    Cleusix, V., Lacroix, C., Vollenweider, S., & Le Blay, G. (2007). Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol., 7, 101–109.CrossRefGoogle Scholar
  30. 30.
    Spinler, J. K., Taweechotipatr, M., Rognerud, C. L., Oub, C. N., Tumwasorn, S., & Versalovic, J. (2008). Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe, 14, 166–171.CrossRefGoogle Scholar
  31. 31.
    Schaefer, L., Auchtung, T. A., Hermans, K. E., Whitehead, D., Borhan, B., & Britton, R. A. (2010). The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiol., 156, 1589–1599.CrossRefGoogle Scholar
  32. 32.
    Sebastianes, F. L. S., Cabedo, N., El Aouad, N., Valente, A. M. M. P., Lacava, P. T., Azevedo, J. L., Pizzirani-Kleiner, A. A., & Cortes, D. (2012). 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr. Microbiol., 65, 622–632.CrossRefGoogle Scholar
  33. 33.
    Warnecke, T. E., Lynch, M. D., Lipscomb, M. L., & Gill, R. T. (2012). Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli. Biotechnol. and Bioeng., 109, 1347–1352.CrossRefGoogle Scholar
  34. 34.
    Colin, T., Bories, A., & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol., 54, 201–205.CrossRefGoogle Scholar
  35. 35.
    Rosander, A., Connolly, E., & Roos, S. (2008). Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol., 74, 6032–6040.CrossRefGoogle Scholar
  36. 36.
    Corrieu, G., Spinnler, H.E., Jomier, Y., & Picque, D. (1988). Automated system to follow up and control the acidification activity of lactic acid starters. Patent application no. FR 2 629 612 (INRA).Google Scholar
  37. 37.
    Spinnler, H. E., & Corrieu, G. (1989). Automatic method to quantify starter activity based on pH measurement. J. Dairy Res., 56, 755–764.CrossRefGoogle Scholar
  38. 38.
    Rault, A., Béal, C., Ghorbal, S., Ogier, J. C., & Bouix, M. (2007). Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiol, 55, 35–43.CrossRefGoogle Scholar
  39. 39.
    Vollenweider, S., Grassi, G., König, I., & Puhan, Z. (2003). Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. J. Agric. Food Chem., 51, 3287–3293.CrossRefGoogle Scholar
  40. 40.
    Barbirato, F., Grivet, J. P., Soucaille, P., & Bories, A. (1996). 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl. Environ. Microbiol., 62, 1448–1451.Google Scholar
  41. 41.
    Vollenweider, S., Evers, S., Zurbriggen, K., & Lacroix, C. (2010). Unraveling the HPA system: an active antimicrobial agent against human pathogens. J. Agric. Food Chem., 58, 10315–10322.CrossRefGoogle Scholar
  42. 42.
    van Maris, A. J. A., Konings, W. N., van Dijken, J. P., & Pronk, J. T. (2004). Microbial export of lactic acid and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab. Eng., 6, 245–255.CrossRefGoogle Scholar
  43. 43.
    Warnecke, T. E., Lynch, M. D., Karimpour-Fard, A., Lipscomb, M. L., Handke, P., Mills, P. T., Ramey, C. J., Hoang, T., & Gill, R. T. (2010). Rapid dissection of a complex phenotype through genomic scale mapping of fitness altering genes. Metabol. Eng., 12, 241–250.CrossRefGoogle Scholar
  44. 44.
    van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, 82, 187–216.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. Burgé
    • 1
    • 2
    • 3
  • C. Saulou-Bérion
    • 2
    • 3
  • M. Moussa
    • 2
    • 3
  • B. Pollet
    • 2
    • 3
  • A. Flourat
    • 1
    • 4
    • 5
  • F. Allais
    • 1
    • 2
    • 3
  • V. Athès
    • 2
    • 3
  • H.E. Spinnler
    • 2
    • 3
  1. 1.Chaire Agro-Biotechnologies Industrielles (ABI)-AgroParisTechReimsFrance
  2. 2.AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA)Thiverval-GrignonFrance
  3. 3.INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA)Thiverval-GrignonFrance
  4. 4.AgroParisTech, Institut Jean-Pierre Bourgin (IJPB)Versailles CedexFrance
  5. 5.INRA, Institut Jean-Pierre Bourgin (IJPB)Versailles CedexFrance

Personalised recommendations