Advertisement

Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 63–75 | Cite as

HPLC–ESI–MSn Analysis, Fed-Batch Cultivation Enhances Bioactive Compound Biosynthesis and Immune-Regulative Effect of Adventitious Roots in Pseudostellaria heterophylla

  • Juan Wang
  • Jing Li
  • Hongfa Li
  • Xiaolei Wu
  • Wenyuan GaoEmail author
Article

Abstract

A electrospray ionization tandem mass spectrometry (ESI–MSn) analysis was performed in order to identify the active composition in Pseudostellaria heterophylla adventitious roots. Pseudostellarin A, C, D, and G were identified from P. heterophylla adventitious roots on the basis of LC–MSn analysis. The culture conditions of adventitious roots were optimized, and datasets were subjected to a partial least squares discriminant analysis (PLS-DA), in which the growth ratio and some compounds showed a positive correlation with an aeration volume of 0.3 vvm and inoculum density of 0.15 %. Fed-batch cultivation enhanced the contents of total saponin, polysaccharides, and specific oxygen uptaker rate (SOUR). The maximum dry root weight (4.728 g l−1) was achieved in the 3/4 Murashige and Skoog (MS) medium group. PLS-DA showed that polysaccharides contributed significantly to the clustering of different groups and showed a positive correlation in the MS medium group. The delayed-type hypersensitivity (DTH) reaction on the mice induced by 2,4-dinitrofluorobenzene (DNFB) was applied to compare the immunocompetence effects of adventitious roots (AR) with field native roots (NR) of P. heterophylla. As a result, AR possessed a similar immunoregulation function as NR.

Keywords

Pseudostellaria heterophylla Adventitious root Bioreactors HPLC–ESI–MSn Immunoassay 

Abbreviations

BTBB

Balloon-type bubble bioreactor

MS

Murashige and Skoog

IBA

Indole-3-butyric acid

DW

Dry weight

SOUR

Specific oxygen uptaker rate

vvm

Volumes of gas per bioreactor volume

EC

Electrical conductivity

DTH

Delayed-type hypersensitivity

DNFB

2,4-Dinitrofluorobenzene

NR

Native root

AR

Adventitious root

Notes

Acknowledgments

This research was funded by the National Science and Technology Support Program (2012BAI29B02), Central Significant Increase or Decrease Program, China (2060302), and 863 program (2014AA022201-04).

References

  1. 1.
    Zhang, C. L., & Zheng, X. X. (2011). Effects of polysaccharides from Pseudostellaria heterophylla on exercise endurance capacity and oxidative stress in forced swimming rats. Scientific Research and Essays, 6, 2360–2365.Google Scholar
  2. 2.
    Qin, M. J., Yu, Y. B., & Huang, W. Z. (2005). Quality assay of Pseudostellaria heterophylla collected from different regions. Research and Practice of Chinese Medicines, 19, 29–32.Google Scholar
  3. 3.
    Ye, Z., Wang, Y. Y., & Tian, H. Q. (2009). Regeneration of plantlets and tetraploidy induction in Pseudostellaria heterophylla. Acta Biologica Cracoviensia Series Botanica, 51, 13–18.Google Scholar
  4. 4.
    Wang, G. R., & Qi, N. M. (2010). Influence of mist intervals and aeration rate on growth and second metabolite production of Pseudostellaria heterophylla adventitious roots in a siphon-mist bioreactor. Biotechnology and Bioprocess Engineering, 15, 1059–1064.CrossRefGoogle Scholar
  5. 5.
    Yin, S. S., Gao, W. Y., Liang, Y. Y., Wang, J., Liu, H., Wei, C. L., & Zuo, B. M. (2013). Influence of sucrose concentration and phosphate source on biomass and metabolite accumulation in adventitious roots of Pseudostellaria heterophylla. Acta Physiologiae Plantarum, 35, 1579–1585.CrossRefGoogle Scholar
  6. 6.
    Arehzoo, Z., Christina, S., Florian, G., Parvaneh, A., Javad, A., Seyed, H. M., & Christoph, W. (2015). Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Industrial Crops and Products, 67, 97–102.CrossRefGoogle Scholar
  7. 7.
    Murthy, H. N., Georgiev, M. I., Kim, Y. S., Jeong, C. S., Kim, S. J., Park, S. Y., & Paek, K. Y. (2015). Ginsenosides: prospective for sustainable biotechnological production. Applied Microbiology and Biotechnology, 98, 6243–6254.CrossRefGoogle Scholar
  8. 8.
    Ken, K., Mineyuki, Y., & Shinji, I. (2012). Large-scale production of saikosaponins through root culturing of Bupleurum falcatum L. using modified airlift reactors. Journal of Bioscience and Bioengineering, 11, 99–105.Google Scholar
  9. 9.
    Gao, W. Y. (2014). Traditional Chinese medicine biological engineering (1st ed.). Shanghai: Shanghai Science and Technology Press.Google Scholar
  10. 10.
    Pan, X. W., Yang, X. L., Shi, Y. Y., & Xu, H. H. (2010). Cu2+ elicitation enhanced camptothecin biosynthesis in cell suspension cultures of Campototheca acuminata decaisne. Journal of Wuhan Bioengineering Institute, 6, 084–087.Google Scholar
  11. 11.
    Tu, J., Sun, H. X., & Ye, Y. P. (2008). Immunomodulatory and antitumor activity of triterpenoid fractions from the rhizomes of Astilbe chinensis. Journal of Ethnopharmacology, 119, 266–271.CrossRefGoogle Scholar
  12. 12.
    Zhao, L. Q., Chen, Y. L., Ren, S., Han, Y., & Cheng, H. B. (2010). Studies on the chemical structure and antitumor activity of an exopolysaccharide from Rhizobium sp. N613. Carbohydrate Research, 345, 637–643.CrossRefGoogle Scholar
  13. 13.
    Wang, Q., Wang, J., Chai, H. Y., Li, J., Man, S. L., & Gao, W. Y. (2014). Optimization of balloon-type bubble bioreactor angle and methyl jasmonate concentration to enhance metabolite production in adventitious roots of Pseudostellaria heterophylla. Research on Chemical Intermediates. doi: 10.1007/s11164-014-1681-y.Google Scholar
  14. 14.
    Jeong, C. S., Debasis, C., Hahn, E. J., Lee, H. L., & Paek, K. Y. (2006). Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochemical Engineering Journal, 27, 252–263.CrossRefGoogle Scholar
  15. 15.
    Han, C., Shen, Y., Chen, J. H., Lee, F. S. C., & Wang, X. R. (2008). HPLC fingerprinting and LC–TOF-MS analysis of the extract of Pseudostellaria heterophylla (Miq.) Pax root. Journal of Chromatography B, 862, 125–131.CrossRefGoogle Scholar
  16. 16.
    Ahmed, S., Hahn, E. J., & Paek, K. Y. (2008). Aeration volume and photosynthetic photon flux affect cell growth and secondary metabolite contents in bioreactor cultures of Morinda citrifolia. Journal of Plant Biology, 51, 209–212.CrossRefGoogle Scholar
  17. 17.
    Zhong, J. J., Yoshida, M., Fujiyama, K., Seki, T., & Yoshida, T. (1993). Enhancement of anthocyanin production by Perilla frutescens cells in a stirred bioreactor with internal light irradiation. Journal of Fermentation and Bioengineering, 75, 299–303.CrossRefGoogle Scholar
  18. 18.
    Meijer, J. J., Hoopen, H. J. G., & Libbenga, K. R. (1993). Effects of hydrodynamic stress on cultured plant cell: a literature survey. Enzyme and Microbial Technology, 15, 234–238.CrossRefGoogle Scholar
  19. 19.
    Cui, X. H., Chakrabarty, D., Lee, E. J., & Paek, K. Y. (2010). Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology, 101, 4708–4716.CrossRefGoogle Scholar
  20. 20.
    McClelland, M. T., & Smith, M. A. L. (1990). Vessel type, closure, and explant orientation influence in vitro performance of five woody species. Hortscience, 25, 797–800.Google Scholar
  21. 21.
    Akalezi, C. O., Liu, S., Lig, Q. S., Yu, J. T., & Zhong, J. J. (1999). Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension culture of Panax ginseng. Process Biochemistry, 34, 639–642.CrossRefGoogle Scholar
  22. 22.
    Paek, K. Y., Hahn, E. J., & Son, S. H. (2001). Application of bioreactors: large-scale micropropagation systems of plants. In Vitro Cellular & Developmental Biology: Plant, 37, 149–157.CrossRefGoogle Scholar
  23. 23.
    Hahn, E. J., Wu, C. H., & Paek, K. Y. (2008). Production of root biomass and secondary metabolites through adventitious root cultures of Echinacea purpurea in Bioreactors. Acta Horticulturae, 829, 73–77.Google Scholar
  24. 24.
    Ryu, D. D. Y., Lee, S. O., & Romani, R. J. (1990). Determination of growth rate for plant cell cultures: comparative studies. Biotechnology and Bioengineering, 35, 305–311.CrossRefGoogle Scholar
  25. 25.
    Zhang, A. H., Sun, H., Yuan, Y., Sun, W. J., Jiao, G. Z., & Wang, X. J. (2011). An in vivo analysis of the therapeutic and synergistic properties of Chinese medicinal formula Yin-Chen-Hao-Tang based on its active constituents. Fitoterapia, 82, 1160–1168.CrossRefGoogle Scholar
  26. 26.
    Geng, L. L., Sun, H. Y., Yuan, Y., Liu, Z. Z., Cui, Y., Bi, K. S., & Chen, X. H. (2013). Discrimination of raw and vinegar-processed Genkwa Flos using metabolomics coupled with multivariate data analysis: a discrimination study with metabolomics coupled with PCA. Fitoterapia, 84, 286–294.CrossRefGoogle Scholar
  27. 27.
    Cui, X. H., Murthy, H. N., Jin, Y. X., Yim, Y. H., Kim, J. Y., & Paek, K. Y. (2011). Production of adventitious root biomass and secondary metabolites of Hypericum perforatum L. in a balloon type airlift reactor. Bioresource Technology, 102, 10072–10079.CrossRefGoogle Scholar
  28. 28.
    Suthar, S., & Ramawat, K. G. (2010). Growth retardants stimulate guggulsterone production in the presence of fungal elicitor in fed-batch cultures of Commiphora wightii. Plant Biotechnology Report, 4, 9–13.CrossRefGoogle Scholar
  29. 29.
    Kobayashi, K., Kaneda, K., & Kasama, T. (2001). Immunopathogenesis of delayed type hypersensitivity. Microscopy Research and Technique, 53, 241–245.CrossRefGoogle Scholar
  30. 30.
    Xiong, Y., Zhang, S., Lu, J., Sun, S. C., Song, B. C., Xu, L. L., Yang, Z. G., & Guan, S. (2013). Investigation of effects of farrerol on suppression of murine T lymphocyte activation in vitro and in vivo. International Immunopharmacology, 16, 313–321.CrossRefGoogle Scholar
  31. 31.
    Liu, T., Ye, L. G., Guan, X. Q., Liang, X. S., Li, C., Sun, Q., Liu, Y., Chen, S. R., Bang, F., & Liu, B. G. (2013). Immunopontentiating and antitumor activities of a polysaccharide from Pulsatilla chinensis (Bunge) Regel. International Journal of Biological Macromolecules, 54, 225–229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Juan Wang
    • 1
    • 2
  • Jing Li
    • 1
  • Hongfa Li
    • 1
  • Xiaolei Wu
    • 3
  • Wenyuan Gao
    • 1
    Email author
  1. 1.Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinChina
  2. 2.State Key Laboratory Breeding Base of Dao-di HerbsChina Academy of Chinese Medical SciencesBeijingChina
  3. 3.R&D CenterTianjin ZhongXin PharmaceuticalsTianjinChina

Personalised recommendations