Applied Biochemistry and Biotechnology

, Volume 176, Issue 7, pp 1937–1949 | Cite as

A Simple Green Synthesis of Palladium Nanoparticles with Sargassum Alga and Their Electrocatalytic Activities Towards Hydrogen Peroxide

  • S. MomeniEmail author
  • I. Nabipour


This study presents the synthesis of palladium nanoparticles (PdNPs) using the extract derived from the marine alga, Sargassum bovinum, collected from Persian Gulf area. Water-soluble compounds that exist in the marine alga extract were the main cause of the reduction of palladium ions to Pd nanoparticles. The basic properties of PdNPs produced in this method were confirmed by UV–visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared spectroscopy (FTIR). TEM confirmed the monodispersed and octahedral shape of PdNPs within the size ranges from 5 to 10 nm. Catalytic performance of the biosynthetic PdNPs was investigated by electrochemical reduction of hydrogen peroxide (H2O2). PdNP-modified carbon ionic liquid electrode (PdNPs/CILE) was developed as a nonenzymatic sensor for the determination of hydrogen peroxide. Amperometric measurements showed that PdNPs/CILE is a reliable sensor for the detection of hydrogen peroxide in the range of 5.0 μM–15.0 mM with a sensitivity of 284.35 mAmM−1 cm−2 and a detection limit of 1.0 μM. Moreover, PdNPs/CILE exhibits a wide linear range, high sensitivity and selectivity, and excellent stability for the detection of H2O2 in aqueous solutions.


Alga Carbon ionic liquid electrode Hydrogen peroxide Palladium nanoparticles Sargassum 


  1. 1.
    Kainz, Q. M., Linhardt, R., Grass, R. N., Vilé, G., Pérez-Ramírez, J., Stark, W. J., & Reiser, O. (2014). Palladium nanoparticles supported on magnetic carbon-coated cobalt nanobeads: highly active and recyclable catalysts for alkene hydrogenation. Advanced Functional Materials, 24, 2020–2027.CrossRefGoogle Scholar
  2. 2.
    Li, Y., Dai, Y., Yang, Z., & Li, T. (2014). Controllable synthesis of palladium nanoparticles and their catalytic abilities in Heck and Suzuki reactions. Inorganica Chimica Acta, 414, 59–62.CrossRefGoogle Scholar
  3. 3.
    Safavi, A., & Momeni, S. (2012). Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst. Journal of Hazardous Materials, 201–202, 125–131.CrossRefGoogle Scholar
  4. 4.
    Jukk, K., Kongi, N., Matisen, L., Kallio, T., Kontturi, K., & Tammeveski, K. (2014). Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets. Electrochimica Acta, 137, 206–212.CrossRefGoogle Scholar
  5. 5.
    Safavi, A., Maleki, N., Farjami, F., & Farjami, E. (2009). Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. Journal of Electroanalytical Chemistry, 626, 75–79.CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Sun, G., Jiang, C., Zheng, X. T., Zheng, L., & Li, C. M. (2014). Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Mikrochimica Acta, 181, 63–70.CrossRefGoogle Scholar
  7. 7.
    Jiang, F., Yue, R., Du, Y., Xu, J., & Yang, P. (2013). A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosensors and Bioelectronics, 44, 127–131.CrossRefGoogle Scholar
  8. 8.
    Bian, X., Guo, K., Liao, L., Xiao, J., Kong, J., Ji, C., & Liu, B. (2012). Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta, 99, 256–261.CrossRefGoogle Scholar
  9. 9.
    Jamal, M., Hasan, M., Mathewson, A., & Razeeb, K. M. (2012). Non-enzymatic and highly sensitive H2O2 sensor based on Pd nanoparticle modified gold nanowire array electrode. Journal of the Electrochemical Society, 159, B825–B829.CrossRefGoogle Scholar
  10. 10.
    Tang, Y., Cao, Y., Wang, S., Shena, G., & Yu, R. (2009). Surface attached-poly(acrylic acid) network as nanoreactor to in-situ synthesize palladium nanoparticles for H2O2 sensing. Sensors Actuat B, 137, 736–740.CrossRefGoogle Scholar
  11. 11.
    Rastogi, P. K., Ganesan, V., & Krishnamoorthi, S. (2014). Palladium nanoparticles decorated gaur gum based hybrid material for electrocatalytic hydrazine determination. Electrochimica Acta, 125, 593–600.CrossRefGoogle Scholar
  12. 12.
    Shavel, A., Cadavid, D., Ibanez, M., Correte, A., & Cabot, A. (2012). Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. Journal of the American Chemical Society, 134, 1438–1441.CrossRefGoogle Scholar
  13. 13.
    Maleki, N., Safavi, A., Farjami, E., & Tajabadi, F. (2008). Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Analitica Chimica Acta, 611, 151–155.CrossRefGoogle Scholar
  14. 14.
    Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8, 417–432.CrossRefGoogle Scholar
  15. 15.
    Kulkarni, N., Muddapur, U. (2014). Biosynthesis of metal nanoparticles: a review. Journal Nanotechnology 510246.Google Scholar
  16. 16.
    Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces, B: Biointerfaces, 103, 283–287.CrossRefGoogle Scholar
  17. 17.
    Inbakandan, D., Venkatesan, R., & Ajmal, K. S. (2010). Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongate (Dendy, 1905). Colloids and Surfaces, B: Biointerfaces, 81, 634–639.CrossRefGoogle Scholar
  18. 18.
    Liu, L., Heinrich, M., Myers, S., & Dworjanyn, S. A. (2012). Towards a better understanding of medicinal uses of the brown seaweed Sargassum in traditional Chinese medicine: a phytochemical and pharmacological review. Journal of Ethnopharmacology, 142, 591–619.CrossRefGoogle Scholar
  19. 19.
    Yende, S., Harle, U., & Chaugule, B. (2014). Therapeutic potential and health benefits of Sargassum species. Pharmacognosy Reviews, 8, 1–7.CrossRefGoogle Scholar
  20. 20.
    Singaravelu, G., Arockiamary, J. S., Ganesh, K. V., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga Sargassum wightii Greville. Colloids and Surfaces. B: Biointerfaces, 57, 97–101.CrossRefGoogle Scholar
  21. 21.
    Mata, Y. N., Torres, E., Blázquez, M. L., Ballester, A., González, F., & Mũnoz, J. A. (2009). Gold(III) biosorption and bioreduction with the brown alga fucus vesiculosus. Journal of Hazardous Materials, 166, 612–618.CrossRefGoogle Scholar
  22. 22.
    Ramakritinan, C. M., Kaarunya, E., Shankar, S., & Kumaraguru, A. K. (2013). Antibacterial effects of Ag, Au and bimetallic (Ag-Au) nanoparticles synthesized from red algae. Solid State Phenomena, 201, 211–230.CrossRefGoogle Scholar
  23. 23.
    Vivek, M., Kumar, P. S., Steffi, S., & Sudha, S. (2011). Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna Journal of Medical Biotechnology, 3, 143–148.Google Scholar
  24. 24.
    Schröfel, A., Kratošová, G., Bohunická, M., Dobročka, E., & Vávra, I. (2011). Biosynthesis of gold nanoparticles using diatoms-silica gold and EPS-gold bio nanocomposite formation. Journal of Nanoparticle Research, 13, 3207–3216.CrossRefGoogle Scholar
  25. 25.
    Yang, X., Li, Q., Wang, H., Huang, J., Lin, L., Wang, W., Sun, D., Su, Y., Opiyo, J. B., Hong, L., Wang, Y., He, N., & Jia, L. (2010). Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. Journal of Nanoparticle Research, 12, 1589–1598.CrossRefGoogle Scholar
  26. 26.
    Sathishkumar, M., Sneha, K., Kwak, I. S., Mao, J., Tripathy, S. J., & Yun, Y.-S. (2009). Phyto-crystallization of palladium through reduction process using Cinnamomum zeylanicum bark extract. Journal of Hazardous Materials, 171, 400–404.CrossRefGoogle Scholar
  27. 27.
    Jia, L., Zhang, Q., Li, Q., & Song, H. (2009). The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology, 20, 385601.CrossRefGoogle Scholar
  28. 28.
    Kriz, K., Anderlund, M., & Kriz, D. (2001). Real-time detection of L-ascorbic acid and hydrogen peroxide in crude food samples employing a reversed sequential differential measuring technique of the SIRE technology based biosensor. Biosensors and Bioelectronics, 16, 363–369.CrossRefGoogle Scholar
  29. 29.
    Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.CrossRefGoogle Scholar
  30. 30.
    Safavi, A., Maleki, N., & Farjami, E. (2009). Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis, 21, 1533–1538.CrossRefGoogle Scholar
  31. 31.
    Huang, J., Wang, D., Hou, H., & You, T. (2008). Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Advanced Functional Materials, 18, 441–448.CrossRefGoogle Scholar
  32. 32.
    Pandey, P. C., & Pandey, A. K. (2012). Surface modification using Prussian blue–gold (I)–palladium nanocomposite: towards bioelectrocatalytic probing of hydrogen peroxide. BioNanoScience, 2, 127–134.CrossRefGoogle Scholar
  33. 33.
    Aziz, M. A., & Kawde, A.-N. (2013). Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles. Mikrochimica Acta, 180, 837–843.CrossRefGoogle Scholar
  34. 34.
    Li, M., Xu, S., Tang, M., Liu, L., Gao, F., & Wang, Y. (2011). Direct electrochemistry of horseradish peroxidase on graphene-modified electrode for electrocatalytic reduction towards H2O2. Electrochimica Acta, 56, 1144–1149.CrossRefGoogle Scholar
  35. 35.
    Liu, H., Duan, C., Su, X., Dong, X., Huang, Z., Shen, W., & Zhu, Z. (2014). A hemoglobin encapsulated titania nanosheet modified reduced graphene oxide nanocomposite as a mediator-free biosensor. Sensors and Actuators B: Chemical, 203, 303–310.CrossRefGoogle Scholar
  36. 36.
    Safavi, A., & Farjami, F. (2010). Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film. Analytical Biochemistry, 402, 20–25.CrossRefGoogle Scholar
  37. 37.
    Yang, F., Cheng, K., Wu, T., Zhang, Y., Yin, J., Wang, G., & Cao, D. (2013). Au-Pd nanoparticles supported on carbon fiber cloth as the electrocatalyst for H2O2 electroreduction in acid medium. Journal of Power Sources, 233, 252–258.CrossRefGoogle Scholar
  38. 38.
    Maleki, N., Safavi, A., & Tajabadi, F. (2006). High-performance carbon composite electrode based on an ionic liquid as a binder. Analytical Chemistry, 78, 3820–3826.CrossRefGoogle Scholar
  39. 39.
    Safavi, A., Momeni, S., & Tohidi, M. (2012). Silver-palladium nanoalloys modified carbon ionic liquid electrode with enhanced electrocatalytic activity towards formaldehyde oxidation. Electroanalysis, 24, 1981–1988.CrossRefGoogle Scholar
  40. 40.
    Yonezawa, T., Imamura, K., & Kimizuka, N. (2001). Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir, 17, 4701–4703.CrossRefGoogle Scholar
  41. 41.
    Zhang, X., Yin, H., Wang, J., Chang, L., Gao, Y., Liu, W., & Tang, Z. (2013). Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale, 5, 8392–8397.CrossRefGoogle Scholar
  42. 42.
    Shao, P., Chen, X., & Sun, P. (2014). Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydrate Polymers, 105, 260–269.CrossRefGoogle Scholar
  43. 43.
    Bo, X., Bai, J., Ju, J., & Guo, L. (2010). A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle. Analitica Chimica Acta, 675, 29–35.CrossRefGoogle Scholar
  44. 44.
    Nandini, S., Nalini, S., Manjunatha, R., Shanmugam, S., Melo, J. S., & Suresh, G. S. (2013). Electrochemical biosensor for the selective determination of hydrogen peroxide based on the co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite. Journal of Electroanalytical Chemistry, 689, 233–242.CrossRefGoogle Scholar
  45. 45.
    Kong, L., Lu, X., Bian, X., Zhang, W., & Wang, C. (2010). A one-pot synthetic approach to prepare palladium nanoparticles embedded hierarchically porous TiO2 hollow spheres for hydrogen peroxide sensing. Journal of Solid State Chemistry, 183, 2421–2425.CrossRefGoogle Scholar
  46. 46.
    You, J.-M., Jeong, Y. N., Ahmed, M. S., Kim, S. K., Choi, H. C., & Jeon, S. (2011). Reductive determination of hydrogen peroxide with MWCNTs-Pd nanoparticles on a modified glassy carbon electrode. Biosensors and Bioelectronics, 26, 2287–2291.CrossRefGoogle Scholar
  47. 47.
    Zhang, W.-J., Bai, L., Lu, L.-M., & Chen, Z. (2012). A novel and simple approach for synthesis of palladium nanoparticles on carbon nanotubes for sensitive hydrogen peroxide detection. Colloids and Surfaces, B: Biointerfaces, 97, 145–149.CrossRefGoogle Scholar
  48. 48.
    Sun, A., Sheng, Q., & Zheng, J. (2012). A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene–chitosan nanocomposite film. Applied Biochemistry and Biotechnology, 166, 764–773.CrossRefGoogle Scholar
  49. 49.
    Chen, X.-M., Cai, Z.-X., Huang, Z.-Y., Oyama, M., Jiang, Y.-Q., & Chen, X. (2013). Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 97, 398–403.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research InstituteBushehr University of Medical SciencesBushehrIran

Personalised recommendations