Advertisement

Applied Biochemistry and Biotechnology

, Volume 176, Issue 7, pp 1815–1833 | Cite as

Overview of Antioxidant Peptides Derived from Marine Resources: The Sources, Characteristic, Purification, and Evaluation Methods

  • RiBang Wu
  • CuiLing Wu
  • Dan Liu
  • XingHao Yang
  • JiaFeng Huang
  • Jiang Zhang
  • Binqiang Liao
  • HaiLun HeEmail author
  • Hao LiEmail author
Article

Abstract

Marine organisms are rich sources of structurally diverse bioactive nitrogenous components. In recent years, numerous bioactive peptides have been identified in a range of marine protein resources, such as antioxidant peptides. Many studies have approved that marine antioxidant peptides have a positive effect on human health and the food industry. Antioxidant activity of peptides can be attributed to free radicals scavenging, inhibition of lipid peroxidation, and metal ion chelating. Moreover, it has also been verified that peptide structure and its amino acid sequence can mainly affect its antioxidant properties. The aim of this review is to summarize kinds of antioxidant peptides from various marine resources. Additionally, the relationship between structure and antioxidant activities of peptides is discussed in this paper. Finally, current technologies used in the preparation, purification, and evaluation of marine-derived antioxidant peptides are also reviewed.

Keywords

Peptides Antioxidant activities Free radicals Lipid oxidation Reactive oxygen species Amino acids component 

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China (31070061, 31370104), Hunan Provincial Natural Science Foundation of China (13JJ9001), National Sparking Plan Project (2013GA770009), the Open-End Fund for the Valuable and Precision Instruments of Central South University, and Fundamental Research Funds for the Central Universities of Central South University (2015zzts273).

References

  1. 1.
    Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74, 139–62.Google Scholar
  2. 2.
    Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., & Lubee, G. (2003). Aberrant expression of peroxiredox in subtypes in neurodegenerative disorders. Brain Research, 967, 152–60.CrossRefGoogle Scholar
  3. 3.
    Ren, Y., Wu, H., Li, X. F., Lai, F. R., Zhao, G. L., & Xiao, X. L. (2014). A two-step, one-pot enzymatic method for preparation of duck egg white protein hydrolysates with high antioxidant activity. Applied Biochemistry and Biotechnology, 172, 1227–1240.CrossRefGoogle Scholar
  4. 4.
    Olfa, T., Dorra, G., Imen, B. S., Salem, E., Mohamed, N. A., Pascal, C., Maria, L. M., Thierry, J., & Ferid, L. (2012). Antioxidative and DNA protective effects of bacillomycin D-like lipopeptides produced by B38 strain. Applied Biochemistry and Biotechnology, 168, 2245–2256.CrossRefGoogle Scholar
  5. 5.
    Zhu, L. J., Chen, J., Tang, X. Y., & Xiong, L. Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56, 2714–2721.CrossRefGoogle Scholar
  6. 6.
    Butterfield, D. A., Castenga, A., Pocernich, C. B., Drake, J., Scapagnini, G., & Calabrese, V. (2002). Nutritional approaches to combat oxidative stress in Alzheimer’s disease. Journal of Nutrition and Biochemistry, 13, 444–461.CrossRefGoogle Scholar
  7. 7.
    Frankel, E. N. (2005). Lipid oxidation (2nd ed.). Bridgwater: The Oily Press.CrossRefGoogle Scholar
  8. 8.
    Cazzola, R., Piuri, G., & Cestaro, B. (2012). An overview on antioxidant supplements—the current situation from a scientific point of view. Agro Food Industry Hi-Technology, 23, 7–9.Google Scholar
  9. 9.
    Tiwari, A. K. (2001). Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidants therapy. Current Science, 81, 1179–1187.Google Scholar
  10. 10.
    Hettiarachchy, N. S., Glenn, K. C., Gnanasambandan, R., & Johnson, M. G. (1996). Natural antioxidant extract from fenugreek (Trigonella foenumgraecum) for ground beef patties. Journal of Food Science, 61, 516–519.CrossRefGoogle Scholar
  11. 11.
    Machie, I. M. (1974). Proteolytic enzymes in recovery of proteins from fish waste. Process Biochemistry, 9, 12–14.Google Scholar
  12. 12.
    Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107, 1485–1493.CrossRefGoogle Scholar
  13. 13.
    Kong, X. Z., Zhou, H. M., & Hua, Y. F. (2008). Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes. Journal of Science Food Agriculture, 88, 920–926.CrossRefGoogle Scholar
  14. 14.
    Ao, J., & Li, B. (2012). Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Science and Technology International, 18, 425–434.CrossRefGoogle Scholar
  15. 15.
    Sheih, I. C., Fang, T. J., Wu, T. K., & Lin, P. H. (2010). Anticancer and antioxidant activities of the peptide fraction from algae protein waste. Journal of Agriculture Food Chemistry, 58, 1202–1207.CrossRefGoogle Scholar
  16. 16.
    Ngo, D. H., Ryu, B. M., & Kim, S. K. (2014). Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chemistry, 143, 246–255.CrossRefGoogle Scholar
  17. 17.
    Ngo, D. H., Ryu, B. M., Vo, T. S., Himaya, S. W. A., Wijesekara, I., & Kim, S. K. (2011). Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. International Journal of Biological Macromolecules, 49, 1110–1116.CrossRefGoogle Scholar
  18. 18.
    Arancibia, M. Y., Ailén, A., Marta, M. C. M., Elvira, L. C., Pilar, M. M., & Carmen, G. G. (2014). Antimicrobial and antioxidant chitosan solutions enriched with active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids, 35, 710–717.CrossRefGoogle Scholar
  19. 19.
    He, H. L., Liu, D., & Ma, C. B. (2013). Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins. Applied Biochemistry and Biotechnology, 169, 738–749.CrossRefGoogle Scholar
  20. 20.
    Ko, J. Y., Lee, J. H., Samarakoon, K., Kim, J. S., & Jeon, Y. J. (2013). Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food and Chemical Toxicology, 52, 113–120.CrossRefGoogle Scholar
  21. 21.
    Herbert, M. (1960). Antioxidative effect of amino-acids. Nature, 186, 886–887.CrossRefGoogle Scholar
  22. 22.
    Tsai, J. S., Chen, T. J., Pan, B. S., Gong, S. D., & Chung, M. Y. (2008). Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry, 106, 552–558.CrossRefGoogle Scholar
  23. 23.
    Graciela, S. C., Myriam, S. M., Carla, P., Irineu, B., Maria, L. N., & Carlos, P. (2014). Fractionation of protein hydrolysates of fish and chicken using membrane ultrafiltration: investigation of antioxidant activity. Applied Biochemistry and Biotechnology, 172, 2877–2893.CrossRefGoogle Scholar
  24. 24.
    Chen, H. M., Muramoto, K., Fumio, Y., Kenshiro, F., & Kiyoshi, N. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agriculture Food and Chemistry, 46, 49–53.CrossRefGoogle Scholar
  25. 25.
    Elena, M. B., Enma, C., Andres, M., Elena, F., & Herminia, D. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 138, 1764–1785.CrossRefGoogle Scholar
  26. 26.
    Sacchetti, G., Di, M. C., Pittia, P., & Martino, G. (2008). Application of a radical scavenging activity test to measure the total antioxidant activity of poultry meat. Meat Science, 80, 1081–1085.CrossRefGoogle Scholar
  27. 27.
    Kalpa, S., & You-Jin, J. (2012). Bio-functionalities of proteins derived from marine algae—a review. Food Research International, 48, 948–960.CrossRefGoogle Scholar
  28. 28.
    Sheih, I. C., Wu, T. K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100, 3419–3425.CrossRefGoogle Scholar
  29. 29.
    Ko, S. C., Kim, D., & Jeon, Y. J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and Chemical Toxicology, 50, 2294–2302.CrossRefGoogle Scholar
  30. 30.
    Wang, T., Rósa, J., Hordur, G. K., Gudmundur, O. H., Jón, O. J., Gudjon, T., & Gudrún, O. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmate. LWT - Food Science and Technology, 43, 1387–1393.CrossRefGoogle Scholar
  31. 31.
    Phanat, K., Soottawat, B., Wonnop, V., & Fereidoon, S. (2012). Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: antioxidant activity and its potential in model systems. Food Chemistry, 135, 1118–1126.CrossRefGoogle Scholar
  32. 32.
    Wang, B., Wang, Y. M., Chi, C. F., Luo, H. Y., Deng, S. G., & Ma, J. Y. (2013). Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Marine Drugs, 11, 4641–4661.CrossRefGoogle Scholar
  33. 33.
    Nazeer, R. A., Sampath, K. N. S., & Jai, G. R. (2012). In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides, 35, 261–68.CrossRefGoogle Scholar
  34. 34.
    Chi, C. F., Wang, B., Deng, Y. Y., Wang, Y. M., Deng, S. G., & Ma, J. Y. (2014). Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Research International, 55, 222–228.CrossRefGoogle Scholar
  35. 35.
    Jiang, H. P., Tong, T. Z., Sun, J. H., Xu, Y. J., Zhao, Z. X., & Liao, D. K. (2014). Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry, 154, 158–163.CrossRefGoogle Scholar
  36. 36.
    Wang, B., Gong, Y. D., Li, Z. R., Yu, D., Chi, C. F., & Ma, J. Y. (2014). Isolation and characterisation of five novel antioxidant peptides from ethanol-soluble proteins hydrolysate of spotless smoothhound (Mustelus griseus) muscle. Journal of Function and Food, 6, 176–185.CrossRefGoogle Scholar
  37. 37.
    Gómez, E. J., Bravo, L., Gómez, G. M. C., Alemán, A., & Montero, P. (2009). Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chemistry, 112, 18–25.CrossRefGoogle Scholar
  38. 38.
    Ahn, C. B., Kim, J. G., & Je, J. Y. (2014). Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chemistry, 147, 78–83.CrossRefGoogle Scholar
  39. 39.
    Ali, B., Naima, N. A., Laïla, M., Rozenn, R., Ahmed, B., Didier, G., & Moncef, N. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118, 559–565.CrossRefGoogle Scholar
  40. 40.
    Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., & Nokihara, K. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agriculture on Food Chemistry, 46, 49–53.CrossRefGoogle Scholar
  41. 41.
    Niranjan, R., Eresha, M., Jung, W. K., Je, J. Y., & Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38, 175–182.CrossRefGoogle Scholar
  42. 42.
    Eresha, M., Niranjan, R., Byun, H. G., & Kim, S. K. (2005). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences, 77, 2166–2178.CrossRefGoogle Scholar
  43. 43.
    Guo, H., Yoshiaki, K., & Masami, Y. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chemistry, 113, 238–245.CrossRefGoogle Scholar
  44. 44.
    Gabriella, P., Barbara, S., Matteo, G., Angelo, D. B. P., & Andrea, C. (2001). Modifications of wheat flour proteins during in vitro digestion of bread dough, crumb, and crust: an electrophoretic and immunological study. Journal of Agriculture Food and Chemistry, 49, 2254–2261.CrossRefGoogle Scholar
  45. 45.
    Sampath, K. N. S., Nazeer, R. A., & Jaiganesh, R. (2011). Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 32, 1496–1501.CrossRefGoogle Scholar
  46. 46.
    Ngo, D. H., Qian, Z. J., Vo, T. S., Ryu, B. M., & Kim, S. K. (2011). Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264.7 cells. Carbohydrate Polymers, 84, 1282–1288.CrossRefGoogle Scholar
  47. 47.
    Zhang, J., Zhang, H., Wang, L., Guo, X., Wang, X., & Yao, H. (2009). Antioxidant activities of the rice endosperm protein hydrolysate: identification of the active peptide. European Food Research and Technology, 229, 709–719.CrossRefGoogle Scholar
  48. 48.
    Rohan, K., Mahinda, S., Yasantha, A., Abu, A., Lee, Y. J., Kim, S. K., Lee, J. B., & Jeon, Y. J. (2007). Protective effect of enzymatic extracts from microalgae against DNA damage induced by H2O2. Marine Biotechnology, 9, 479–490.CrossRefGoogle Scholar
  49. 49.
    Li, B., Chen, F., Wang, X., Ji, B., & Wu, Y. (2007). Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chemistry, 102, 1135–1143.CrossRefGoogle Scholar
  50. 50.
    Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42, 840–846.CrossRefGoogle Scholar
  51. 51.
    Hsu, K. C., Lu, G. H., & Jao, C. L. (2009). Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Research International, 42, 647–652.CrossRefGoogle Scholar
  52. 52.
    Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agriculture on Food and Chemistry, 51, 3661–3667.CrossRefGoogle Scholar
  53. 53.
    Xie, N. N., Huang, J. J., Li, B., Cheng, J. H., Wang, Z. C., Yin, J. F., & Yan, X. M. (2015). Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues. Food Chemistry, 173, 210–217.CrossRefGoogle Scholar
  54. 54.
    Wang, Q. K., Li, W., He, Y. H., Ren, D. D., Felicia, K., Song, L. L., & Yu, X. J. (2014). Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chemistry, 145, 991–996.CrossRefGoogle Scholar
  55. 55.
    Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y., & Xu, Y. F. (2013). Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138, 1713–1719.CrossRefGoogle Scholar
  56. 56.
    Song, L. Y., Li, T. F., Yu, R. M., Yan, C. Y., Ren, S. F., & Zhao, Y. (2008). Antioxidant activities of hydrolysates of arca subcrenata prepared with three proteases. Marine Drugs, 6, 607–619.CrossRefGoogle Scholar
  57. 57.
    Cheung, I. W. Y., Cheung, L. K. Y., Tan, N. Y., & Li, C. E. C. Y. (2012). The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chemistry, 134, 1297–1306.CrossRefGoogle Scholar
  58. 58.
    Ali, T., Sabeena, F. K. H., Charlotte, J., & Caroline, P. B. (2014). Antioxidant activitie.s and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chemistry, 142, 318–326.CrossRefGoogle Scholar
  59. 59.
    Yang, J. I., Ho, H. Y., Chu, Y. J., & Chow, C. J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chemistry, 110, 128–136.CrossRefGoogle Scholar
  60. 60.
    Janet, C. C., Alan, J. H. A., Cristian, J. M., Gustavo, F. G. L., & Gloria, D. O. (2012). Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews. doi: 10.1007/s12393-012-9058-8.Google Scholar
  61. 61.
    Pripp, A. H., Isaksson, T., Stepaniak, L., Sørhaug, T., & Ardo, Y. (2005). Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends in Food Science and Technology, 16, 484–494.CrossRefGoogle Scholar
  62. 62.
    Catala, C. S., Benavente, F., Gimenez, E., Barbosa, J., & Sanz, N. V. (2010). Identification of bioactive peptides in hypoal-lergenic infant milk formulas by capillary electrophoresis–mass spectrometry. Analytica Chimica Acta, 683, 119–125.CrossRefGoogle Scholar
  63. 63.
    Byun, H. G., Lee, J. K., Park, H. G., Jeon, J. K., & Kim, S. K. (2009). Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochemistry, 44, 842–846.CrossRefGoogle Scholar
  64. 64.
    Martinez, G. R., Loureiro, A. P. M., Marques, S. A., Miyamoto, S., Yamaguchi, L. F., Onuki, J., Almeida, E. A., Garcia, C. C. M., Barbosa, L. F., Medeiros, M. H. G., & Di Mascio, P. (2003). Oxidative and alkylating damage in DNA. Mutation Research-Reviews Mutation, 544(2–3), 115–127.CrossRefGoogle Scholar
  65. 65.
    Xiong, S.L.,Lu, F.,Shi, M.J.,Wu, Z.M. (2012). Advanement of evaluation methods about DPPH radical scavenging activity in screening antioxidant. Science Technology Food Industry, Vol.33, No.08.Google Scholar
  66. 66.
    Krishnanand, M., Himanshu, O., & Nabo, K. C. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chemistry, 130, 1036–1043.CrossRefGoogle Scholar
  67. 67.
    Kim, E. K., Hwang, J. W., Kim, Y. S., Ahn, C. B., Jeon, Y. J., Kweon, H. J., Young, Y. B., Moon, S. H., Jeon, B. T., & Park, P. J. (2013). A novel bioactive peptide derived from enzymatic hydrolysis of Ruditapes philippinarum: purification and investigation of its free-radical quenching potential. Process Biochemistry, 48, 325–330.CrossRefGoogle Scholar
  68. 68.
    Cheng, F. C., Jen, J. F., & Tsai, T. H. (2002). Hydroxyl radical in living systems and its separation methods. Journal of Chromatography B, 781, 481–496.CrossRefGoogle Scholar
  69. 69.
    William, M. N. (2014). Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. BBA-General Subjects, 1840, 757–767.CrossRefGoogle Scholar
  70. 70.
    You, H. J., Oh, D. H., Choi, C. Y., Lee, D. G., Hahm, K. S., Moon, A. R., & Jeong, H. G. (2002). Protective effect of metallothionein-III on DNA damage in response to reactive oxygen species. Biochemical Et Biophysica Acta-General Subjects, 1573, 33–38.CrossRefGoogle Scholar
  71. 71.
    Julia, W., Maria, R. C., Leandro, P., & Marcos, E. C. (2007). Effect of storage and processing on plasmid, yeast and plant genomic DNA stability in juice from genetically modified oranges. Journal of Biotechnology, 128, 194–203.CrossRefGoogle Scholar
  72. 72.
    Chai, H. J., Chan, Y. L., Li, T. L., Shiau, C. Y., & Wu, C. J. (2013). Evaluation of lanternfish (Benthosema pterotum) hydrolysates as antioxidants against hydrogen peroxide induced oxidative injury. Food Research International, 54, 1409–1418.CrossRefGoogle Scholar
  73. 73.
    Murainaa, I. A., Suleimanb, M. M., & Eloff, J. N. (2009). Can MTT be used to quantify the antioxidant activity of plant extracts? Phytomedicine, 16, 665–668.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • RiBang Wu
    • 1
  • CuiLing Wu
    • 1
  • Dan Liu
    • 1
  • XingHao Yang
    • 1
  • JiaFeng Huang
    • 1
  • Jiang Zhang
    • 1
  • Binqiang Liao
    • 1
  • HaiLun He
    • 1
    Email author
  • Hao Li
    • 2
    Email author
  1. 1.School of Life Science, State Key Laboratory of Medical GeneticsCentral South UniversityChangshaChina
  2. 2.Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations