Advertisement

Applied Biochemistry and Biotechnology

, Volume 176, Issue 3, pp 924–937 | Cite as

Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from l-Phenylalanine

  • Ying Zang
  • Ting Jiang
  • Ying Cong
  • Zhaojuan Zheng
  • Jia OuyangEmail author
Article

Abstract

Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the l-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.

Keywords

Zea mays Phenylalanine ammonia-lyase l-phenylalanine Enzyme properties trans-Cinnamic acid 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31200443), Program for New Century Excellent Talents in University (NCET-11-0988), and Excellent Youth Foundation of Jiangsu Province of China (BK2012038). The authors are also grateful to National Science and Technology Support Program (2012BAD32B06) and PAPD for partial funding of this study.

References

  1. 1.
    Cui, J. D., Qiu, J. Q., Fan, X. W., Jia, S. R., & Tan, Z. L. (2014). Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review. Critical Reviews in Biotechnology, 34, 258–268.CrossRefGoogle Scholar
  2. 2.
    Fritz, R. R., Hodgns, D. S., & Abell, C. W. (1976). Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. Journal of Biological Chemistry, 251, 4646–4650.Google Scholar
  3. 3.
    Tanaka, Y., Matsuoka, M., Yamanoto, N., Ohashi, Y., Kano-Murakami, Y., & Ozeki, Y. (1989). Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiology, 90, 1403–1407.CrossRefGoogle Scholar
  4. 4.
    Hahlbrock, K., & Scheel, D. (1989). Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Biology, 40, 347–369.CrossRefGoogle Scholar
  5. 5.
    Dixon, R. A., & Palva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7, 1085–1097.CrossRefGoogle Scholar
  6. 6.
    Marusich, W. C., Jensen, R. A., & Zamir, L. O. (1981). Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis. Journal of Bacteriology, 146, 1013–1019.Google Scholar
  7. 7.
    Koukol, J., & Conn, E. E. (1961). The metabolism of aromatic compounds in higher plants. Journal of Biological Chemistry, 236, 2692–2698.Google Scholar
  8. 8.
    Aydas, S. B., Ozturk, S., & Aslim, B. (2013). Phenylalanine ammonia lyase (PAL) enzyme activity and antioxidant properties of some cyanobacteria isolates. Food Chemistry, 136, 164–169.CrossRefGoogle Scholar
  9. 9.
    Moffitt, M. C., Louie, G. V., Bowman, M. E., Pence, J., Noel, J. P., & Moore, B. S. (2007). Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry, 46, 1004–1012.CrossRefGoogle Scholar
  10. 10.
    Cochrane, F. C., Davin, L. B., & Lewis, N. G. (2004). The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry, 65, 1557–1564.CrossRefGoogle Scholar
  11. 11.
    Wang, L., Gamez, A., Archer, H., Abola, E. E., Sarkissian, C. N., Fitzpatrick, P., Wendt, D., Zhang, Y., Vellard, M., Bliesath, J., Bell, S. M., Lemontt, J. F., Scriver, C. R., & Stevens, R. C. (2008). Structural and biochemical characterization of the therapeutic Anabaena variabilis phenylalanine ammonia lyase. Journal of Molecular Biology, 380, 623–635.CrossRefGoogle Scholar
  12. 12.
    Jaliani, H. Z., Farajnia, S., Mohammadi, S. A., Barzegar, A., & Talebi, S. (2013). Engineering and kinetic stabilization of the therapeutic enzyme Anabeana variabilis phenylalanine ammonia lyase. Applied Biochemistry and Biotechnology, 171, 1805–1818.CrossRefGoogle Scholar
  13. 13.
    Louie, G. V., Bowman, M. E., Moffitt, M. C., Baiga, T. J., Moore, B. S., & Noel, J. P. (2006). Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chemistry & Biology, 13, 1327–1338.CrossRefGoogle Scholar
  14. 14.
    Logemann, E., Parniske, M., & Hahlbrock, K. (1995). Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proceedings of the National Academy of Sciences, 92, 5905–5909.CrossRefGoogle Scholar
  15. 15.
    Song, J., & Wang, Z. (2009). Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Molecular Biology Reports, 36, 939–952.CrossRefGoogle Scholar
  16. 16.
    Xu, F., Deng, G., Cheng, S., Zhang, W., Huang, X., Li, L., Cheng, H., Rong, X., & Li, J. (2012). Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia. Molecules, 17, 7810–7823.CrossRefGoogle Scholar
  17. 17.
    Xiang, L. K., & Moore, B. S. (2005). Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. Journal of Bacteriology, 187, 4286–4289.CrossRefGoogle Scholar
  18. 18.
    Ma, W., Wu, M., Wu, Y., Ren, Z., & Zhong, Y. (2013). Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis. Plant Cell Reports, 32, 1179–1190.CrossRefGoogle Scholar
  19. 19.
    Hsieh, L. S., Hsieh, Y. L., Yeh, C. S., Cheng, C. Y., Yang, C. C., & Lee, P. D. (2011). Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii. Molecular Biology Reports, 38, 283–290.CrossRefGoogle Scholar
  20. 20.
    Hsieh, L. S., Ma, G. J., Yang, C. C., & Lee, P. D. (2010). Cloning, expression, site-directed mutagenesis and immunolocalization of phenylalanine ammonia-lyase in Bambusa oldhamii. Phytochemistry, 71, 1999–2009.CrossRefGoogle Scholar
  21. 21.
    Cui, J. D., Zhang, S., & Sun, L. M. (2012). Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of L-phenylalanine. Applied Biochemistry and Biotechnology, 167, 835–844.CrossRefGoogle Scholar
  22. 22.
    Jia, S. R., Cui, J. D., Li, Y., & Sun, A. Y. (2008). Production of L-phenylalanine from trans-cinnamic acids by high-level expression of phenylalanine ammonia lyase gene from Rhodosporidium toruloides in Escherichia coli. Biochemical Engineering Journal, 42, 193–197.CrossRefGoogle Scholar
  23. 23.
    Zhu, L. B., Cui, W. J., Fang, Y. Q., Liu, Y., Gao, X. X., & Zhou, Z. M. (2013). Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnology Letters, 35, 751–756.CrossRefGoogle Scholar
  24. 24.
    Alejandra, V. T., Martinez, L. M., Hernandez-Chavez, G., Rocha, M., Martinez, A., Bolivar, F., & Gosset, G. (2015). Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microbial Cell Factories, 14, 6.CrossRefGoogle Scholar
  25. 25.
    Gao, Z. M., Wang, X. C., Peng, Z. H., Zheng, B., & Liu, Q. (2012). Characterization and primary functional analysis of phenylalanine ammonia-lyase gene from Phyllostachys edulis. Plant Cell Reports, 31, 1345–1356.CrossRefGoogle Scholar
  26. 26.
    Babich, O. O., Pokrovsky, V. S., Anisimova, N. Y., Sokolov, N. N., & Prosekov, A. Y. (2013). Recombinant L-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent. Biotechnology and Applied Biochemistry, 60, 316–322.CrossRefGoogle Scholar
  27. 27.
    Hyun, M. W., Yun, Y. H., Kim, J. Y., & Kim, S. H. (2011). Fungal and plant phenylalanine ammonia-lyase. Microbiology, 39, 257–265.Google Scholar
  28. 28.
    Li, C. L., Bai, Y. C., Chen, H., Zhao, H. X., Shao, J. R., & Wu, Q. (2012). Cloning, characterization and functional analysis of a phenylalanine ammonia-lyase gene (FtPAL) from Fagopyrum tataricum Gaertn. Plant Molecular Biology Reporter, 30, 1172–1182.CrossRefGoogle Scholar
  29. 29.
    Hu, G. S., Jia, J. M., Hur, Y. J., Chung, Y. S., Lee, J. H., Yun, D. J., Chung, W. S., Yi, G. H., Kim, T. H., & Kim, D. H. (2011). Molecular characterization of phenylalanine ammonia lyase gene from Cistanche deserticola. Molecular Biology Reports, 38, 3741–3750.CrossRefGoogle Scholar
  30. 30.
    Rosler, J., Krekel, F., Amrhein, N., & Schmid, J. (1997). Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiology, 113, 175–179.CrossRefGoogle Scholar
  31. 31.
    Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.CrossRefGoogle Scholar
  32. 32.
    Hoskins, J. A. (1984). The occurrence, metabolism and toxicity of cinnamic acid and related compounds. Journal of Applied Toxicology, 4, 283–292.CrossRefGoogle Scholar
  33. 33.
    Miyamoto, K., Sasaki, M., Minamisawa, Y., Kurahashi, Y., Kano, H., & Ishikawa, S. (2004). Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels). Journal of Biomedical Materials Research. Part A, 70, 550–559.CrossRefGoogle Scholar
  34. 34.
    Edwards, M., Rourk, P. M., Riby, P. G., & Mendham, A. P. (2014). Not quite the last word on the Perkin reaction. Tetrahedron, 70, 7245–7252.CrossRefGoogle Scholar
  35. 35.
    Wall, V. M., Eisenstadt, A., Ager, D. J., & Laneman, S. A. (1999). The Heck reaction and cinnamic acid synthesis by heterogeneous catalysis. Platinum Metals Review, 43, 138–145.Google Scholar
  36. 36.
    Mitra, A. K., De, A., & Karchaudhuri, N. (1999). Application of microwave irradiation techniques for the syntheses of cinnamic acids by Doebner condensation. Synthetic Communications, 29, 573–581.CrossRefGoogle Scholar
  37. 37.
    Nijkamp, K., Van Luijk, N., DeBont, J. A., & Wery, J. (2005). The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Applied Microbiology and Biotechnology, 69, 170–177.CrossRefGoogle Scholar
  38. 38.
    Noda, S., Miyazaki, T., Miyoshi, T., Miyake, M., Okai, N., Tanaka, T., Ogino, C., & Kondo, A. (2011). Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. Journal of Industrial Microbiology & Biotechnology, 38, 643–648.CrossRefGoogle Scholar
  39. 39.
    Hsieh, L. S., Yeh, C. S., Pan, H. C., Cheng, C. Y., Yang, C. C., & Lee, P. D. (2010). Cloning and expression of a phenylalanine ammonia-lyase gene (BoPAL2) from Bambusa oldhamii in Escherichia coli and Pichia pastoris. Protein Expression and Purification, 71, 224–230.CrossRefGoogle Scholar
  40. 40.
    Kyndt, J. A., Meyer, T. E., Cusanovich, M. A., & Van Beeumen, J. J. (2002). Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letters, 512, 240–244.CrossRefGoogle Scholar
  41. 41.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  42. 42.
    MacDonald, M. J., & D'Cunha, G. B. (2007). A modern view of phenylalanine ammonia lyase. Biochemistry and Cell Biology, 85, 273–282.CrossRefGoogle Scholar
  43. 43.
    Xue, Z., McCluskey, M., Cantera, K., Sariaslani, F. S., & Huang, L. (2007). Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. Journal of Industrial Microbiology & Biotechnology, 34, 599–604.CrossRefGoogle Scholar
  44. 44.
    Bartsch, S., & Bornscheuer, U. T. (2010). Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates. Protein Engineering Design and Selection, 23, 929–933.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ying Zang
    • 1
  • Ting Jiang
    • 2
  • Ying Cong
    • 2
  • Zhaojuan Zheng
    • 2
  • Jia Ouyang
    • 2
    • 3
    Email author
  1. 1.College of ForestryNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  3. 3.Jiangsu Key Laboratory of Biomass-based Green Fuels and ChemicalsNanjingPeople’s Republic of China

Personalised recommendations