Applied Biochemistry and Biotechnology

, Volume 176, Issue 3, pp 772–781 | Cite as

Sequence and Bioinformatic Analysis of Family 1 Glycoside Hydrolase (GH) 1 Gene from the Oomycete Pythium myriotylum Drechsler

  • R. Aswati Nair
  • C. Geethu
  • Amit Sangwan
  • P. Padmesh Pillai


The oomycetous phytopathogen Pythium myriotylum secretes cellulases for growth/nutrition of the necrotroph. Cellulases are multi-enzyme system classified into different glycoside hydrolase (GH) families. The present study deals with identification and characterization of GH gene sequence from P. myriotylum by a PCR strategy using consensus primers. Cloning of the full-length gene sequence using genome walker strategy resulted in identification of 1230-bp P. myriotylum GH gene sequence, designated as PmGH1. Analysis revealed that PmGH1 encodes a predicted cytoplasmic 421 amino acid protein with an apparent molecular weight of 46.77 kDa and a theoretical pI of 8.11. Tertiary structure of the deduced amino acid sequence showed typical (α/β)8 barrel folding of family 1 GHs. Sequence characterization of PmGH1 identified the conserved active site residues, viz., Glu 181 and Glu 399, that function as acid-base catalyst and catalytically active nucleophile, respectively. Binding sites for N-acetyl-D-glucosamine (NAG) were revealed in the PmGH1 3D structure with Glu181 and Glu399 positioned on either side to form a catalytic pair. Phylogenetic analysis indicated a closer affiliation of PmGH1 with sequences of GH1 family. Results presented are first attempts providing novel insights into the evolutionary and functional perspectives of the identified P. myriotylum GH.


Cell wall degrading enzymes Family 1 GH Genome walker Oomycete Pythium 



The present research was supported by Faculty Research Grant (FRG) scheme (No. NITC/Dean(C&SR)/FRG10/0112) of NITC. PP thanks the Director of JNTBGRI, Kerala, India, for the research facilities extended.

Compliance with Ethical Standards

We hereby certify that the communicated manuscript is not submitted to any other journal for simultaneous consideration, nor been published previously (partly or in full). Furthermore, authors declare that they have no conflict of interest concerning this article. The investigations reported in the present manuscript do not involve any clinical studies engaging human participants or animals.


  1. 1.
    McCarter, S. M., & Littrell, R. H. (1970). Comparative pathogenicity of Pythium aphanidermatum and Pythium myriotylum to twelve plant species and intraspecific variation in virulence. Phytopathology, 60, 264–268.CrossRefGoogle Scholar
  2. 2.
    Hardham, A. R. (2007). Cell biology of plant-oomycete interactions. Cellular Microbiology, 9(1), 31–39.CrossRefGoogle Scholar
  3. 3.
    Drechsler, C. (1930). Some new species of Pythium. Journal of the Washington Academy of Sciences, 20(16), 398–418.Google Scholar
  4. 4.
    Levesque, C. A., & De Cock, A. (2004). Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research, 108, 1363–1383.CrossRefGoogle Scholar
  5. 5.
    Agrios, G. N. (2005). Plant pathology (5th ed., pp. 410–413). Burlington: Elsevier Academic Press.Google Scholar
  6. 6.
    Tomioka, K., Takehara, T., Osaki, H., Sekiguchi, H., Nomiyama, K., & Kageyama, K. (2013). Damping-off of soybean caused by Pythium myriotylum in Japan. Journal of General Plant Pathology, 79, 162–164.CrossRefGoogle Scholar
  7. 7.
    Endo, R. M., & Colt, W. M. (1974). Anatomy, cytology and physiology of infection by Pythium. Proceedings of the American Phytopathological Society, 1, 215–223.Google Scholar
  8. 8.
    Campion, C., Massiot, P., & Rouxel, F. (1997). Aggressiveness and production of cell-wall degrading enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, responsible for cavity spot on carrots. European Journal of Plant Pathology, 103, 725–735.CrossRefGoogle Scholar
  9. 9.
    Liepman, A. H., Wightman, R., Geshi, N., Turner, S. R., & Scheller, H. V. (2010). Arabidopsis—a powerful model system for plant cell wall research. Plant Journal, 61, 1107–1121.CrossRefGoogle Scholar
  10. 10.
    Mueller, O., Kahmann, R., Aguilar, G., Trejo-Aguilar, B., Wu, A., & de Vries, R. P. (2008). The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology, 45(Suppl 1), S63–S70.CrossRefGoogle Scholar
  11. 11.
    Tian, C., Beeson, W. T., Iavarone, A. T., Sun, J., Marletta, M. A., Cate, J. H., & Glass, N. L. (2009). Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America, 106, 22157–22162.CrossRefGoogle Scholar
  12. 12.
    Pryce-Jones, E., Carver, T., & Gurr, S. J. (1999). The roles of cellulase enzymes and mechanical force in host penetration by Erisyphe graminis f.sp. hordei. Physiological and Molecular Plant Pathology, 55, 175–182.CrossRefGoogle Scholar
  13. 13.
    Latijnhouwers, M., de Wit, P. J. G. M., & Govers, F. (2003). Oomycetes and fungi: similar weaponry to attack plants. Trends in Microbiology, 11(10), 462–469.CrossRefGoogle Scholar
  14. 14.
    Levesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., et al. (2010). Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 11(7), R73.CrossRefGoogle Scholar
  15. 15.
    Ten Have, A., Tenberge, K.B., Benen, J.A.E., Tudzynski, P., Visser, J., & van Kan, J.A.L. (2002). The contribution of cell wall degrading enzymes to pathogenesis of fungal pathogens. In: The Mycota XI agricultural applications. Springer-Verlag, Heidelberg, pp 341–358.Google Scholar
  16. 16.
    Seidl, M. F., van den Ackerveken, G., Govers, F., & Snel, B. (2011). A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiology, 155(2), 628–644.CrossRefGoogle Scholar
  17. 17.
    Adhikari, B. N., Hamilton, J. P., Zerillo, M. M., Tisserat, N., Lévesque, A., & Buell, C. R. (2013). Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS ONE, 8(10), e75072.CrossRefGoogle Scholar
  18. 18.
    Geethu, C., Resna, A. K., & Aswati Nair, R. (2013). Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease. Antonie Van Leeuwenhoek, 104(5), 749–757.CrossRefGoogle Scholar
  19. 19.
    Wood, T. M., & McCrae, S. I. (1977). Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydrate Research, 57, 117–133.CrossRefGoogle Scholar
  20. 20.
    Ryu, D. D., & Mandels, M. (1980). Cellulases: biosynthesis and applications. Enzyme and Microbial Technology, 2, 91–102.CrossRefGoogle Scholar
  21. 21.
    Bayer, E. A., Moraq, E., & Lamed, R. (1994). The cellulosome—a treasure trove for biotechnology. Trends in Biotechnology, 12, 379–386.CrossRefGoogle Scholar
  22. 22.
    Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, D233–D238.CrossRefGoogle Scholar
  23. 23.
    Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarity. Biochemical Journal, 280, 309–316.Google Scholar
  24. 24.
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490–D495.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y.-P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.-P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24, 452–481.CrossRefGoogle Scholar
  27. 27.
    Moller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucleic Acids Research, 20(22), 6115–6116.CrossRefGoogle Scholar
  28. 28.
    Altschul, S. F., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
  29. 29.
    Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., & Higgins, D. (1997). The Clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.CrossRefGoogle Scholar
  30. 30.
    Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786.CrossRefGoogle Scholar
  31. 31.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.CrossRefGoogle Scholar
  32. 32.
    Wass, M. N., Kelley, L. A., & Sternberg, M. J. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research, 38, W469–W473.CrossRefGoogle Scholar
  33. 33.
    Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.CrossRefGoogle Scholar
  34. 34.
    Zechel, D. L., & Withers, S. G. (2001). Dissection of nucleophilic and acid-base catalysis in glycosidases. Current Opinion in Chemical Biology, 5(6), 643–649.CrossRefGoogle Scholar
  35. 35.
    Marcus, L., Barash, I., Sneh, B., Koltin, Y., & Finkler, A. (1986). Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn. Physiological and Molecular Plant Pathology, 29, 325–336.CrossRefGoogle Scholar
  36. 36.
    Jia, J., Dyer, P. S., Buswell, J. A., & Peberdy, J. F. (1999). Cloning the cbhI and cbhII genes involved in cellulose utilisation by the straw mushroom Volvariella volvacea. Molecular and General Genetics, 261, 985–993.CrossRefGoogle Scholar
  37. 37.
    Sheppard, P. O., Grant, F. J., Oort, P. J., Sprecher, C. A., Foster, D. C., Hagen, F. S., Upshall, A., McKnight, G. L., & O’Hara, P. J. (1994). The use of conserved cellulase family-specific sequences to clone cellulose homologue cDNAs from Fusarium oxysporum. Gene, 150, 163–167.CrossRefGoogle Scholar
  38. 38.
    Haiech, J., Chippaux, M., Barras, F., Py, B., & Bortoli-German, I. (1991). Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis. Protein Engineering, 4(3), 325–333.CrossRefGoogle Scholar
  39. 39.
    Cui, C.-H., Kim, J.-K., Kim, S.-C., & Im, W.-T. (2014). Characterization of a ginsenoside-transforming β-glucosidase from Paenibacillus mucilaginosus and its application for enhanced production of minor ginsenoside F2. PLoS ONE, 9(1), e85727.CrossRefGoogle Scholar
  40. 40.
    Ghosh, R., & Chakrabarti, C. (2008). Crystal structure analysis of NP24-I: a thaumatin-like protein. Planta, 228, 883–890.CrossRefGoogle Scholar
  41. 41.
    Henrissat, B. (1998). Glycosidase families. Biochemical Society Transactions, 26, 153–156.Google Scholar
  42. 42.
    Stals, I., Karkehabadi, S., Kim, S., Ward, M., Van Landschoot, A., Devreese, B., & Sandgren, M. (2012). High resolution crystal structure of the endo-N-Acetyl-β-D-glucosaminidase responsible for the deglycosylation of Hypocrea jecorina cellulases. PLoS ONE, 7(7), e40854.CrossRefGoogle Scholar
  43. 43.
    Tzelepis, G. D., Melin, P., Jensen, D. F., Stenlid, J., & Karlsson, M. (2012). Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genetics and Biology, 49(9), 717–730.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Aswati Nair
    • 1
  • C. Geethu
    • 1
  • Amit Sangwan
    • 1
  • P. Padmesh Pillai
    • 2
  1. 1.School of BiotechnologyNational Institute of Technology Calicut (NITC)CalicutIndia
  2. 2.Biotechnology and Bioinformatics DivisionJawaharlal Nehru Tropical Botanic Garden and Research InstituteThiruvananthapuramIndia

Personalised recommendations