Advertisement

Applied Biochemistry and Biotechnology

, Volume 176, Issue 3, pp 670–699 | Cite as

A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria

  • Firouz AbbasianEmail author
  • Robin Lockington
  • Megharaj Mallavarapu
  • Ravi Naidu
Article

Abstract

Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

Keywords

Aliphatic hydrocarbons Metabolism Anaerobic bacteria Aerobic bacteria 

Notes

Acknowledgments

The authors are very grateful to the Centre for Environmental Risk Assessment and Remediation (CERAR) located in University of South Australia (UniSA) for their support.

References

  1. 1.
    Schirmer, A., Rude, M. A., Li, X., Popova, E., & Del Cardayre, S. B. (2010). Microbial biosynthesis of alkanes. Science, 329(5991), 559–562.CrossRefGoogle Scholar
  2. 2.
    McCarthy, E. D., & Calvin, K. (2008). Organic geochemical studies. I. Molecular criteria for hydrocarbon genesis.Google Scholar
  3. 3.
    Odell, P. R. (2013). Oil and world power (Routledge revivals). Routledge.Google Scholar
  4. 4.
    Hu, G., Li, J., & Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: a review. Journal of Hazardous Materials, 261, 470–490.CrossRefGoogle Scholar
  5. 5.
    Rosenberg, E. (2013). Hydrocarbon-oxidizing bacteria. In The prokaryotes—Prokaryotic physiology and biochemistry (pp. 201–214). New York: Springer.Google Scholar
  6. 6.
    Guha, P., & GUPTA, A. (2013). Recovery of glycerine from soap-lye. Journal of the Indian Institute of Science, 23, 317.Google Scholar
  7. 7.
    Jimeson, R. M., Radosevich, M. C., Stevens, R. R., & Giardino-Radosevich, G. (2012). Biofuel petroleum fuel blend; gasoline and blend of C1-C8 alcohols. Google Patents.Google Scholar
  8. 8.
    Chou, C.-C., Riviere, J. E., & Monteiro-Riviere, N. A. (2002). Differential relationship between the carbon chain length of jet fuel aliphatic hydrocarbons and their ability to induce cytotoxicity vs. interleukin-8 release in human epidermal keratinocytes. Toxicological Sciences, 69(1), 226–233.CrossRefGoogle Scholar
  9. 9.
    Monserud, J. H., & Schwartz, D. K. (2012). Effects of molecular size and surface hydrophobicity on oligonucleotide interfacial dynamics. Biomacromolecules, 13(12), 4002–4011.Google Scholar
  10. 10.
    Husain, S. (2008). Microbial metabolism of high molecular weight polycyclic aromatic hydrocarbons. Remediation, 18, 131–161.CrossRefGoogle Scholar
  11. 11.
    Ladygina, N., Dedyukhina, E., & Vainshtein, M. (2006). A review on microbial synthesis of hydrocarbons. Process Biochemistry, 41(5), 1001–1014.CrossRefGoogle Scholar
  12. 12.
    Ben Ayed, H., Jridi, M., Maalej, H., Nasri, M., & Hmidet, N. (2013). Characterization and stability of biosurfactant produced by Bacillus mojavensis A21 and its application in enhancing solubility of hydrocarbon. Journal of Chemical Technology and Biotechnology.Google Scholar
  13. 13.
    Jin, H., Chen, L., Wang, J., & Zhang, W. (2014). Engineering biofuel tolerance in non-native producing microorganisms. Biotechnology Advances, 32, 541–548.CrossRefGoogle Scholar
  14. 14.
    Segura, A., Molina, L., Fillet, S., Krell, T., Bernal, P., Muñoz-Rojas, J., & Ramos, J.-L. (2012). Solvent tolerance in Gram-negative bacteria. Current Opinion in Biotechnology, 23(3), 415–421.CrossRefGoogle Scholar
  15. 15.
    Bustamante, M., Durán, N., & Diez, M. (2012). Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of Soil Science and Plant Nutrition, 12(4), 667–687.Google Scholar
  16. 16.
    Miller, R., & Bartha, R. (1989). Evidence from tiposome encapsulation for transport-limited microbial metabolism of solid alkanes. Applied and Environmental Microbiology, 55, 268–274.Google Scholar
  17. 17.
    Hua, F., Wang, H. Q., Li, Y., & Zhao, Y. C. (2013). Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17. Journal of Microbiology, 51(6), 791–799.CrossRefGoogle Scholar
  18. 18.
    Li, Y., Wang, H., Hua, F., Su, M., & Zhao, Y. (2014). Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process. Bioresource Technology.Google Scholar
  19. 19.
    Riazi, M. (2005). Characterization and properties of petroleum fractions. West Conshohocken: American Society for Testing and Materials (ASTM).CrossRefGoogle Scholar
  20. 20.
    van Beilen, J. B., & Funhoff, E. G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 74(1), 13–21.CrossRefGoogle Scholar
  21. 21.
    Li, L., Liu, X., Yang, W., Xu, F., Wang, W., Wang, L., Feng, L., Bartlam, M., & Rao, Z. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. Journal of Molecular Biology, 376(2), 453–465.CrossRefGoogle Scholar
  22. 22.
    Xie, M., Alonso, H., & Roujeinikova, A. (2011). An improved procedure for the purification of catalytically active alkane hydroxylase from Pseudomonas putida GPo1. Applied Biochemistry and Biotechnology, 165(3-4), 823–831.CrossRefGoogle Scholar
  23. 23.
    Tinberg, C. E., Song, W. J., Izzo, V., & Lippard, S. J. (2011). Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Biochemistry, 50(11), 1788–1798.CrossRefGoogle Scholar
  24. 24.
    Taylor, A. E., Vajrala, N., Giguere, A. T., Gitelman, A. I., Arp, D. J., Myrold, D. D., Sayavedra-Soto, L., & Bottomley, P. J. (2013). Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria. Applied and Environmental Microbiology, 79(21), 6544–6551.CrossRefGoogle Scholar
  25. 25.
    Luesken, F. A., van Alen, T. A., van der Biezen, E., Frijters, C., Toonen, G., Kampman, C., Hendrickx, T. L., Zeeman, G., Temmink, H., & Strous, M. (2011). Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Applied Microbiology and Biotechnology, 92(4), 845–854.CrossRefGoogle Scholar
  26. 26.
    Redmond, M. C., Valentine, D. L., & Sessions, A. L. (2010). Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Applied and Environmental Microbiology, 76(19), 6412–6422.CrossRefGoogle Scholar
  27. 27.
    Urlacher, V. B., & Girhard, M. (2012). Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends in Biotechnology, 30(1), 26–36.CrossRefGoogle Scholar
  28. 28.
    Morikawa, M. (2010). Dioxygen activation responsible for oxidation of aliphatic and aromatic hydrocarbon compounds: current state and variants. Applied Microbiology and Biotechnology, 87(5), 1595–1603.CrossRefGoogle Scholar
  29. 29.
    van Beilen, J. B., Wubbolts, M. G., & Witholt, B. (1994). Genetics of alkane oxidation byPseudomonas oleovorans. Biodegradation, 5(3–4), 161–174.CrossRefGoogle Scholar
  30. 30.
    Van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M., & Witholt, B. (2003). Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology, 58(4), 427–440.CrossRefGoogle Scholar
  31. 31.
    Palfey, B. A., Ballou, D. P., & Massey, V. (1995). Oxygen activation by flavins and pterins. In Active oxygen in biochemistry (pp. 37–83). Springer.Google Scholar
  32. 32.
    Urlacher, V. B., & Eiben, S. (2006). Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends in Biotechnology, 24(7), 324–330.CrossRefGoogle Scholar
  33. 33.
    Gricman, Ł., Vogel, C., & Pleiss, J. (2013). Conservation analysis of class‐specific positions in cytochrome P450 monooxygenases: functional and structural relevance. Proteins: Structure, Function, and Bioinformatics, 82, 491–504.CrossRefGoogle Scholar
  34. 34.
    Ortiz de Montellano, P. R. (2010). Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chemical Reviews, 110(2), 932.CrossRefGoogle Scholar
  35. 35.
    Larkin, M. J., Kulakov, L. A., & Allen, C. C. (2005). Biodegradation and Rhodococcus—masters of catabolic versatility. Current Opinion in Biotechnology, 16(3), 282–290.CrossRefGoogle Scholar
  36. 36.
    Throne-Holst, M., Wentzel, A., Ellingsen, T. E., Kotlar, H.-K., & Zotchev, S. B. (2007). Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Applied and Environmental Microbiology, 73(10), 3327–3332.CrossRefGoogle Scholar
  37. 37.
    Kubota, M., Nodate, M., Yasumoto-Hirose, M., Uchiyama, T., Kagami, O., Shizuri, Y., & Misawa, N. (2005). Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Bioscience, Biotechnology, and Biochemistry, 69(12), 2421–2430.CrossRefGoogle Scholar
  38. 38.
    Črešnar, B., & Petrič, Š. (2011). Cytochrome P450 enzymes in the fungal kingdom. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(1), 29–35.CrossRefGoogle Scholar
  39. 39.
    Anderson, K. W., Biermann, M., Eirich, L. D., Gates, J. A., Vice, G. H., & Wilson, C.R. (2008). Biooxidation capabilities of Candida sp. Google Patents.Google Scholar
  40. 40.
    Waché, Y. (2013). Production of dicarboxylic acids and flagrances by Yarrowia lipolytica. In Yarrowia lipolytica (pp. 151–170). Springer.Google Scholar
  41. 41.
    Binazadeh, M., Karimi, I. A., & Li, Z. (2009). Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzyme and Microbial Technology, 45, 195–202.CrossRefGoogle Scholar
  42. 42.
    Ji, Y., Mao, G., Wang, Y., & Bartlam, M. (2013). Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Frontiers in Microbiology, 4, 58.CrossRefGoogle Scholar
  43. 43.
    Sakai, Y., Maeng, J. H., Kubota, S., Tani, A., Tani, Y., & Kato, N. (1996). A non-conventional dissimilation pathway for long chain n-alkanes in Acinetobacter sp. M-1 that starts with a dioxygenase reaction. Journal of Fermentation and Bioengineering, 81(4), 286–291.CrossRefGoogle Scholar
  44. 44.
    Kalyuzhnaya, M., Yang, S., Rozova, O., Smalley, N., Clubb, J., Lamb, A., Gowda, G. N., Raftery, D., Fu, Y., & Bringel, F. (2013). Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nature Communications, 4, 2785.CrossRefGoogle Scholar
  45. 45.
    Kotani, T., Kawashima, Y., Yurimoto, H., Kato, N., & Sakai, Y. (2006). Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. Journal of Bioscience and Bioengineering, 102(3), 184–192.CrossRefGoogle Scholar
  46. 46.
    Murrell, J., & Smith, T. (2010). Biochemistry and molecular biology of methane monooxygenase. In Handbook of hydrocarbon and lipid microbiology (pp. 1045–1055). Heidelberg: Springer.CrossRefGoogle Scholar
  47. 47.
    van Beilen, J. B., Funhoff, E. G., van Loon, A., Just, A., Kaysser, L., Bouza, M., Holtackers, R., Röthlisberger, M., Li, Z., & Witholt, B. (2006). Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkanedegrading eubacteria lacking integral membrane alkane hydroxylases. Applied and Environmental Microbiology, 72(1), 59–65.CrossRefGoogle Scholar
  48. 48.
    Whyte, L. G., Smits, T. H. M., Labbe, D., Witholt, B., Greer, C. W., & van Beilen, J. B. (2002). Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus Strains Q15 and NRRL B-16531. Applied and Environmental Microbiology, 68(12), 5933–5942.CrossRefGoogle Scholar
  49. 49.
    Grossi, V., Cravo-Laureau, C., Rontani, J.-F., Cros, M., & Hirschler-Réa, A. (2011). Anaerobic oxidation of nalkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites. Research in Microbiology, 162(9), 915.CrossRefGoogle Scholar
  50. 50.
    Beller, H. R., Goh, E.-B., & Keasling, J. D. (2010). Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Applied and Environmental Microbiology, 76(4), 1212–1223.CrossRefGoogle Scholar
  51. 51.
    Wiegel, J. (2006). The Genus Xanthobacter. In The prokaryotes (pp. 290–314). Heidelberg: Springer.CrossRefGoogle Scholar
  52. 52.
    Grossi, V., Cravo-Laureau, C., Guyoneaud, R., Ranchou-Peyruse, A., & Hirschler-Réa, A. (2008). Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary. Organic Geochemistry, 39(8), 1197–1203.CrossRefGoogle Scholar
  53. 53.
    Zhang, Y., Tang, X.-J., Shen, B., Yu, X.-J., Wang, E.-T., & Yuan, H.-L. (2013). Identification and characterization of the butane-utilizing bacterium, Arthrobacter sp. PG-3-2, harboring a novel bmoX gene. Geomicrobiology Journal, 30(2), 85–92.CrossRefGoogle Scholar
  54. 54.
    Lin, H., Liu, J.-Y., Wang, H.-B., Ahmed, A. A. Q., & Wu, Z.-L. (2011). Biocatalysis as an alternative for the production of chiral epoxides: a comparative review. Journal of Molecular Catalysis B: Enzymatic, 72(3), 77–89.CrossRefGoogle Scholar
  55. 55.
    Krishnakumar, A. M. (2007). Structural studies of enzymes involved in propylene and acetone metabolism in Xanthobacter autotrophicus. Montana State University.Google Scholar
  56. 56.
    Weijers, C., Jongejan, H., Franssen, M., De Groot, A., & De Bont, J. (1995). Dithiol-and NAD-dependent degradation of epoxyalkanes by Xanthobacter Py2. Applied Microbiology and Biotechnology, 42(5), 775–781.CrossRefGoogle Scholar
  57. 57.
    Smith, T. J. (2010). Monooxygenases, bacterial: Oxidation of alkenes. In Encyclopedia of industrial biotechnology.Google Scholar
  58. 58.
    Taylor, A. E., Arp, D. J., Bottomley, P. J., & Semprini, L. (2010). Extending the alkene substrate range of vinyl chloride utilizing Nocardioides sp. strain JS614 with ethene oxide. Applied Microbiology and Biotechnology, 87(6), 2293–2302.CrossRefGoogle Scholar
  59. 59.
    Toda, H., Imae, R., Komio, T., & Itoh, N. (2012). Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides. Applied Microbiology and Biotechnology, 96(2), 407–418.CrossRefGoogle Scholar
  60. 60.
    Jin, S., Makris, T. M., Bryson, T. A., Sligar, S. G., & Dawson, J. H. (2003). Epoxidation of olefins by hydroperoxo-ferric cytochrome P450. Journal of the American Chemical Society, 125(12), 3406–3407.CrossRefGoogle Scholar
  61. 61.
    Guengerich, F. P., & Munro, A. W. (2013). Unusual cytochrome P450 enzymes and reactions. Journal of Biological Chemistry, 288(24), 17065–17073.CrossRefGoogle Scholar
  62. 62.
    Nishino, S. F., Shin, K. A., Gossett, J. M., & Spain, J. C. (2013). Cytochrome P450 initiates degradation of cis-dichloroethene by Polaromonas sp. strain JS666. Applied and Environmental Microbiology, 79(7), 2263–2272.CrossRefGoogle Scholar
  63. 63.
    Jazestani, J. (2012). Bioavailability and biodegradation of organic xenobiotic recalcitrant polycyclic aromatic hydrocarbons (PAHs) in different soil environments. ProQuest, UMI Dissertations Publishing.Google Scholar
  64. 64.
    Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environment International, 37(8), 1362–1375.CrossRefGoogle Scholar
  65. 65.
    Chen, Y., Li, C., Zhou, Z., Wen, J., You, X., Mao, Y., Lu, C., Huo, G., & Jia, X. (2014). Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Applied Biochemistry and Biotechnology, 172(7), 3433–3447.CrossRefGoogle Scholar
  66. 66.
    Suttinun, O., Luepromchai, E., & Müller, R. (2013). Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation. Reviews in Environmental Science and Bio/Technology, 12(1), 99–114.CrossRefGoogle Scholar
  67. 67.
    Kuroki, T. (2012). Comparative mutagenicity of diol epoxides of benzo [a] pyrene and. Molecular and Cell Biology, 2, 123Google Scholar
  68. 68.
    Widersten, M., Gurell, A., & Lindberg, D. (2010). Structure–function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800(3), 316–326.CrossRefGoogle Scholar
  69. 69.
    Wood, T. K. (2008). Molecular approaches in bioremediation. Current Opinion in Biotechnology, 19(6), 572–578.CrossRefGoogle Scholar
  70. 70.
    Glueck, S. M., Gümüs, S., Fabian, W. M., & Faber, K. (2010). Biocatalytic carboxylation. Chemical Society Reviews, 39(1), 313–328.CrossRefGoogle Scholar
  71. 71.
    Erb, T. J. (2011). Carboxylases in natural and synthetic microbial pathways. Applied and Environmental Microbiology, 77(24), 8466–8477.CrossRefGoogle Scholar
  72. 72.
    Oelschlägel, M., Gröning, J. A., Tischler, D., Kaschabek, S. R., & Schlömann, M. (2012). Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme. Applied and Environmental Microbiology, 78(12), 4330–4337.CrossRefGoogle Scholar
  73. 73.
    Hou, C. T. (2006). 15 Biotransformation of aliphatic hydrocarbons and fatty acids.Google Scholar
  74. 74.
    Rocha, C. A., Pedregosa, A. M., & Laborda, F. (2011). Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925. AMB Express, 1(1), 1–10.CrossRefGoogle Scholar
  75. 75.
    Johnson, R. J., West, C. E., Swaih, A. M., Folwell, B. D., Smith, B. E., Rowland, S. J., & Whitby, C. (2012). Aerobic biotransformation of alkyl branched aromatic alkanoic naphthenic acids via two different pathways by a new isolate of Mycobacterium. Environmental Microbiology, 14(4), 872–882.CrossRefGoogle Scholar
  76. 76.
    Alvarez, L. A., Exton, D. A., Timmis, K. N., Suggett, D. J., & McGenity, T. J. (2009). Characterization of marine isoprene‐degrading communities. Environmental Microbiology, 11(12), 3280–3291.CrossRefGoogle Scholar
  77. 77.
    van Hylckama Vlieg, J. E., Leemhuis, H., Spelberg, J. H. L., & Janssen, D. B. (2000). Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. Journal of Bacteriology, 182(7), 1956–1963.CrossRefGoogle Scholar
  78. 78.
    Nhi-Cong, L. T., Mikolasch, A., Klenk, H.-P., & Schauer, F. (2009). Degradation of the multiple branched alkane 2, 6, 10, 14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum. International Biodeterioration & Biodegradation, 63(2), 201–207.CrossRefGoogle Scholar
  79. 79.
    Shennan, J. L. (2006). Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. Journal of Chemical Technology and Biotechnology, 81(3), 237–256.CrossRefGoogle Scholar
  80. 80.
    Thi Nhi Cong, L. (2008). Degradation of branched chain aliphatic and aromatic petroleum hydrocarbons by microorganisms. Universitätsbibliothek.Google Scholar
  81. 81.
    Schurig, C., Miltner, A., & Kaestner, M. (2014). Hexadecane and pristane degradation potential at the level of the aquifer—evidence from sediment incubations compared to in situ microcosms. Environmental Science and Pollution Research, 1–14.Google Scholar
  82. 82.
    Comandini, A., Dubois, T., Abid, S., & Chaumeix, N. (2013). Comparative study on cyclohexane and decalin oxidation. Energy & Fuels, 28(1), 714–724.CrossRefGoogle Scholar
  83. 83.
    Wilbon, P. A., Chu, F., & Tang, C. (2013). Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromolecular Rapid Communications, 34(1), 8–37.CrossRefGoogle Scholar
  84. 84.
    Gupta, S., Marko, M. G., Miller, V. A., Schaefer, F. T., Anthony, J. R., & Porter, J. R. (2014). Novel production of terpenoids in escherichia coli and activities against breast cancer cell lines. Applied Biochemistry and Biotechnology, 1–13.Google Scholar
  85. 85.
    Wittcoff, H. A., Reuben, B. G., & Plotkin, J. S. (2012). Industrial organic chemicals. Hoboken: Wiley.CrossRefGoogle Scholar
  86. 86.
    Iwaki, H., Nakai, E., Nakamura, S., & Hasegawa, Y. (2008). Isolation and characterization of new cyclohexylacetic acid-degrading bacteria. Current Microbiology, 57(2), 107–110.CrossRefGoogle Scholar
  87. 87.
    Koma, D., Sakashita, Y., Kubota, K., Fujii, Y., Hasumi, F., Chung, S., & Kubo, M. (2004). Degradation pathways of cyclic alkanes in Rhodococcus sp. NDKK48. Applied Microbiology and Biotechnology, 66(1), 92–99.CrossRefGoogle Scholar
  88. 88.
    Kostichka, K., Thomas, S. M., Gibson, K. J., Nagarajan, V., & Cheng, Q. (2001). Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. Journal of Bacteriology, 183(21), 6478–6486.CrossRefGoogle Scholar
  89. 89.
    Chen, M. W., Cheng, Q., Gibson, K. J., Kostichka, K. N.-S., Thomas, S. M., & Nagarajan, V. (2004). Genes involved in cyclododecanone degradation pathway. Google Patents.Google Scholar
  90. 90.
    Lee, E.-H., & Cho, K.-S. (2008). Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere, 71(9), 1738–1744.CrossRefGoogle Scholar
  91. 91.
    Morgan, P., & Watkinson, R. J. (1994). Biodegradation of components of petroleum. In Biochemistry of microbial degradation (pp. 1–13). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  92. 92.
    Widdel, F., Knittel, K., & Galushko, A. (2010). In K. N. Timmis (Ed.), Anaerobic hydrocarbon-degrading microorganisms: An overview. Berlin: Springer.Google Scholar
  93. 93.
    Rosenberg, E., Stackebrandt, E., Schleifer, K.-H., Dworkin, M., & Falkow, S. (2007). Anaerobic biodegradation of hydrocarbons including methane. New York: Springer.Google Scholar
  94. 94.
    Jobelius, C., Ruth, B., Griebler, C., Meckenstock, R. U., Hollender, J., Reineke, A., Frimmel, F. H., & Zwiener, C. (2011). Metabolites indicate hot spots of biodegradation and biogeochemical gradients in a high-resolution monitoring well. Environmental Science & Technology, 45(2), 474.CrossRefGoogle Scholar
  95. 95.
    Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N. V., & Gulin, M. B. (2002). Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science (New York, NY), 297(5583), 1013–1015.CrossRefGoogle Scholar
  96. 96.
    Hasinger, M., Scherr, K. E., Lundaa, T., Bräuer, L., Zach, C., & Loibner, A. P. (2012). Changes in iso-and n−alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. Journal of Biotechnology, 157(4), 490–498.CrossRefGoogle Scholar
  97. 97.
    Singh, A., Van Hamme, J. D., Kuhad, R. C., Parmar, N., & Ward, O. P. (2014). Subsurface petroleum microbiology. In Geomicrobiology and biogeochemistry (pp. 153–173). Springer.Google Scholar
  98. 98.
    Dojka, M. A., Hugenholtz, P., Haack, S. K., & Pace, N. R. (1998). Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Applied and Environmental Microbiology, 64(10), 3869–3877.Google Scholar
  99. 99.
    Pilloni, G., von Netzer, F., Engel, M., & Lueders, T. (2011). Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiology Ecology, 78(1), 165–175.CrossRefGoogle Scholar
  100. 100.
    Brodkorb, D., Gottschall, M., Marmulla, R., Lüddeke, F., & Harder, J. (2010). Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes. The Journal of Biological Chemistry, 285(40), 30436–30442.CrossRefGoogle Scholar
  101. 101.
    Shinoda, Y., Sakai, Y., Uenishi, H., Uchihashi, Y., Hiraishi, A., Yukawa, H., Yurimoto, H., & Kato, N. (2004). Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Applied and Environmental Microbiology, 70(3), 1385–1392.CrossRefGoogle Scholar
  102. 102.
    Weelink, S. A. B., Smidt, H., Talarico Saia, F., Rijpstra, I., Röling, W., Stams, A. J. M., & van Doesburg, W. C. J. (2009). A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiology Ecology, 70(3), 575.CrossRefGoogle Scholar
  103. 103.
    Callaghan, A. V., Morris, B. E. L., Pereira, I. A. C., McInerney, M. J., Austin, R. N., Groves, J. T., Kukor, J. J., Suflita, J. M., Young, L. Y., Zylstra, G. J., & Wawrik, B. (2012). The genome sequence of Desulfatibacillum alkenivorans AK‐01: a blueprint for anaerobic alkane oxidation. Environmental Microbiology, 14(1), 101–113.CrossRefGoogle Scholar
  104. 104.
    Selesi, D. E., & Meckenstock, R. U. (2009). Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiology Ecology, 68(1), 86–93.CrossRefGoogle Scholar
  105. 105.
    Khelifi, N., Grossi, V., Hamdi, M., Dolla, A., Tholozan, J.-L., Ollivier, B., & Hirschler-Réa, A. (2010). Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. Applied and Environmental Microbiology, 76(9), 3057–3060.CrossRefGoogle Scholar
  106. 106.
    Grossi, V., Cravo-Laureau, C., Méou, A., Raphel, D., Garzino, F., & Hirschler-Réa, A. (2007). Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T. Applied and Environmental Microbiology, 73(24), 7882–7890.CrossRefGoogle Scholar
  107. 107.
    Rontani, J.-F., Mouzdahir, A., Michotey, V., & Bonin, P. (2002). Aerobic and anaerobic metabolism of squalene by a denitrifying bacterium isolated from marine sediment. Archives of Microbiology, 178(4), 279–287.CrossRefGoogle Scholar
  108. 108.
    Zengler, K., Heider, J., Rosselló-Mora, R., & Widdel, F. (1999). Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Archives of Microbiology, 172(4), 204–212.CrossRefGoogle Scholar
  109. 109.
    Coates, J. D., Chakraborty, R., Lack, J. G., O'Connor, S. M., Cole, K. A., Bender, K. S., & Achenbach, L. A. (2001). Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature, 411(6841), 1039–1043.CrossRefGoogle Scholar
  110. 110.
    Liu, A., Garcia-Dominguez, E., Rhine, E. D., & Young, L. Y. (2004). A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiology Ecology, 48(3), 323–332.CrossRefGoogle Scholar
  111. 111.
    Wu, M., Ettwig, K., Jetten, M., Strous, M., Keltjens, J., & van Niftrik, L. (2011). A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochemical Society Transactions, 39(1), 243.CrossRefGoogle Scholar
  112. 112.
    Ettwig, K. F., Speth, D. R., Reimann, J., Wu, M. L., Jetten, M. S. M., & Keltjens, J. T. (2012). Bacterial oxygen production in the dark. Frontiers in Microbiology, 3, 273.CrossRefGoogle Scholar
  113. 113.
    Wardlaw, G. D., Arey, J. S., Reddy, C. M., Nelson, R. K., Ventura, G. T., & Valentine, D. L. (2008). Disentangling oil weathering at a marine seep using GC x GC: broad metabolic specificity accompanies subsurface petroleum biodegradation. Environmental Science & Technology, 42(19), 7166.CrossRefGoogle Scholar
  114. 114.
    Smith, S. M., Rawat, S., Telser, J., Hoffman, B. M., Stemmler, T. L., & Rosenzweig, A. C. (2011). Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry, 50(47), 10231–10240.CrossRefGoogle Scholar
  115. 115.
    Schink, B. (1985). Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiology Letters, 31(2), 69–77.CrossRefGoogle Scholar
  116. 116.
    Grabowski, A., Nercessian, O., Fayolle, F., Blanchet, D., & Jeanthon, C. (2005). Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiology Ecology, 54(3), 427–443.CrossRefGoogle Scholar
  117. 117.
    Jones, D. M., Head, I. M., Gray, N. D., Adams, J. J., Rowan, A. K., Aitken, C. M., Bennett, B., Huang, H., Brown, A., Bowler, B. F. J., Oldenburg, T., & Erdmann, M. (2008). Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 451(7175), 176–180.CrossRefGoogle Scholar
  118. 118.
    Einsle, O., Niessen, H., Abt, D. J., Seiffert, G., Schink, B., Huber, R., Messerschmidt, A., & Kroneck, P. M. (2005). Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase from Pelobacter acetylenicus. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 61(3), 299–301.Google Scholar
  119. 119.
    Selesi, D., Jehmlich, N., von Bergen, M., Schmidt, F., Rattei, T., Tischler, P., Lueders, T., & Meckenstock, R. U. (2009). Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. Journal of Bacteriology, 192(1), 295–306.CrossRefGoogle Scholar
  120. 120.
    Kniemeyer, O., & Heider, J. (2001). Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. Journal of Biological Chemistry, 276(24), 21381–21386.CrossRefGoogle Scholar
  121. 121.
    Meckenstock, R. U., & Mouttaki, H. (2011). Anaerobic degradation of non-substituted aromatic hydrocarbons. Current Opinion in Biotechnology, 22(3), 406–414.CrossRefGoogle Scholar
  122. 122.
    Tenbrink, F., Schink, B., & Kroneck, P. M. H. (2011). Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. Journal of Bacteriology, 193(5), 1229–1236.CrossRefGoogle Scholar
  123. 123.
    Thauer, R. K. (2011). Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO 2. Current Opinion in Microbiology, 14(3), 292–299.CrossRefGoogle Scholar
  124. 124.
    Verfürth, K., Pierik, A. J., Leutwein, C., Zorn, S., & Heider, J. (2004). Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m-xylene metabolism. Archives of Microbiology, 181(2), 155–162.CrossRefGoogle Scholar
  125. 125.
    Beasley, K. K., & Nanny, M. A. (2012). Potential energy surface for anaerobic oxidation of methane via fumarate addition. Environmental Science & Technology, 46(15), 8244–8252.CrossRefGoogle Scholar
  126. 126.
    Tierney, M., & Young, L. (2010). Anaerobic degradation of aromatic hydrocarbons, In Handbook of hydrocarbon and lipid microbiology (pp. 925–934). Springer.Google Scholar
  127. 127.
    Leuthner, B., & Heider, J. (2000). Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. Journal of Bacteriology, 182(2), 272–277.CrossRefGoogle Scholar
  128. 128.
    Rotaru, A. E., Probian, C., Wilkes, H., & Harder, J. (2010). Highly enriched Betaproteobacteria growing anaerobically with p‐xylene and nitrate. FEMS Microbiology Ecology, 71(3), 460–468.CrossRefGoogle Scholar
  129. 129.
    Kropp, K. G., Davidova, I. A., & Suflita, J. M. (2000). Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Applied and Environmental Microbiology, 66(12), 5393–5398.CrossRefGoogle Scholar
  130. 130.
    Cravo-Laureau, C., Grossi, V., Raphel, D., Matheron, R., & Hirschler-Réa, A. (2005). Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Applied and Environmental Microbiology, 71(7), 3458–3467.CrossRefGoogle Scholar
  131. 131.
    Rabus, R., Wilkes, H., Behrends, A., Armstroff, A., Fischer, T., Pierik, A. J., & Widdel, F. (2001). Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl) succinate as initial product and for involvement of an organic radical in n-hexane metabolism. Journal of Bacteriology, 183(5), 1707–1715.CrossRefGoogle Scholar
  132. 132.
    Wilkes, H., Rabus, R., Fischer, T., Armstroff, A., Behrends, A., & Widdel, F. (2002). Anaerobic degradation of nhexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl) succinate via C-skeleton rearrangement. Archives of Microbiology, 177(3), 235–243.CrossRefGoogle Scholar
  133. 133.
    Widdel, F., & Rabus, R. (2001). Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology, 12, 259–276.CrossRefGoogle Scholar
  134. 134.
    Heider, J. (2007). Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Current Opinion in Chemical Biology, 11(2), 188–194.CrossRefGoogle Scholar
  135. 135.
    Kloer, D. P., Hagel, C., Heider, J., & Schulz, G. E. (2006). Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure, 14(9), 1377–1388.CrossRefGoogle Scholar
  136. 136.
    Kniemeyer, O., & Heider, J. (2001). (S)-1-phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Archives of Microbiology, 176(1–2), 129–135.CrossRefGoogle Scholar
  137. 137.
    Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F., & Reinhardt, R. (2005). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Archives of Microbiology, 183(1), 27–36.CrossRefGoogle Scholar
  138. 138.
    Jobst, B., Schühle, K., Linne, U., & Heider, J. (2010). ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. Journal of Bacteriology, 192(5), 1387–1394.CrossRefGoogle Scholar
  139. 139.
    Abu Laban, N., Selesi, D., Rattei, T., Tischler, P., & Meckenstock, R. U. (2010). Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron‐reducing enrichment culture. Environmental Microbiology, 12(10), 2783–2796.Google Scholar
  140. 140.
    Small, F. J., & Ensign, S. A. (1995). Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2. Journal of Bacteriology, 177(21), 6170–6175.Google Scholar
  141. 141.
    Clark, D. D., & Ensign, S. A. (1999). Evidence for an inducible nucleotide-dependent acetone carboxylase in Rhodococcus rhodochrousB276. Journal of Bacteriology, 181(9), 2752–2758.Google Scholar
  142. 142.
    Rosner, B. M., & Schink, B. (1995). Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein. Journal of Bacteriology, 177(20), 5767–5772.Google Scholar
  143. 143.
    Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese- and iron-dependent marine methane oxidation. Science, 325(5937), 184–187.CrossRefGoogle Scholar
  144. 144.
    Wilms, R., Sass, H., Köpke, B., Cypionka, H., & Engelen, B. (2007). Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate‐reducing bacteria and methanogenic archaea. FEMS Microbiology Ecology, 59(3), 611–621.CrossRefGoogle Scholar
  145. 145.
    Danko, A. S., & Freedman, D. L. (2008). Involvement of carbon dioxide in the aerobic biodegradation of ethylene oxide, ethene, and vinyl chloride. Process Biochemistry, 43(5), 517–521.CrossRefGoogle Scholar
  146. 146.
    Moran, J. J., Beal, E. J., Vrentas, J. M., Orphan, V. J., Freeman, K. H., & House, C. H. (2008). Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 10(1), 162.Google Scholar
  147. 147.
    Seeliger, S., Cord-Ruwisch, R., & Schink, B. (1998). A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. Journal of Bacteriology, 180(14), 3686–3691.Google Scholar
  148. 148.
    Brodersen, J., Bäumer, S., Abken, H. J., Gottschalk, G., & Deppenmeier, U. (1999). Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Gö1 by diphenyleneiodonium. European Journal of Biochemistry/FEBS, 259(1–2), 218.CrossRefGoogle Scholar
  149. 149.
    Aeckersberg, F., Bak, F., & Widdel, F. (1991). Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Archives of Microbiology, 156(1), 5–14.CrossRefGoogle Scholar
  150. 150.
    Boopathy, R., Shields, S., & Nunna, S. (2012). Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA. Applied Biochemistry and Biotechnology, 167(6), 1560–1568.CrossRefGoogle Scholar
  151. 151.
    Efroymson, R. A., & Alexander, M. (1991). Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Applied and Environmental Microbiology, 57(5), 1441–1447.Google Scholar
  152. 152.
    Jiang, H., Chen, Y., Jiang, P., Zhang, C., Smith, T. J., Murrell, J. C., & Xing, X.-H. (2010). Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochemical Engineering Journal, 49(3), 277–288.CrossRefGoogle Scholar
  153. 153.
    Seo, J., Kang, S.-I., Ryu, J.-Y., Lee, Y.-J., Park, K. D., Kim, M., Won, D., Park, H.-Y., Ahn, J.-H., & Chong, Y. (2010). Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Applied Microbiology and Biotechnology, 86(5), 1451–1462.CrossRefGoogle Scholar
  154. 154.
    Boyd, D. R., Sharma, N. D., Stevenson, P. J., Blain, M., McRoberts, C., Hamilton, J. T., Argudo, J. M., Mundi, H., Kulakov, L. A., & Allen, C. C. (2011). Dioxygenase-catalysed cis-dihydroxylation of meta-substituted phenols to yield cyclohexenone cis-diol and derived enantiopure cis-triol metabolites. Organic & Biomolecular Chemistry, 9(5), 1479–1490.CrossRefGoogle Scholar
  155. 155.
    Zhang, X., Qu, Y., Ma, Q., Zhou, H., Li, X., Kong, C., & Zhou, J. (2013). Cloning and expression of naphthalene dioxygenase genes from Comamonas sp. MQ for indigoids production. Process Biochemistry, 48(4), 581–587.CrossRefGoogle Scholar
  156. 156.
    Librando, V., & Pappalardo, M. (2013). In silico bioremediation of polycyclic aromatic hydrocarbon: a frontier in environmental chemistry. Journal of Molecular Graphics and Modelling, 44, 1–8.CrossRefGoogle Scholar
  157. 157.
    Sonomoto, K., Hoq, M. M., Tanaka, A., & Fukui, S. (1983). 11β-hydroxylation of cortexolone (Reichstein compound S) to hydrocortisone by Curvularia lunata entrapped in photo-cross-linked resin gels. Applied and Environmental Microbiology, 45(2), 436–443.Google Scholar
  158. 158.
    Ghanem, K. M., El-Aassar, S. A., & Yusef, H. H. (1992). Transformation of Reichstein’s compound S into prednisolone by immobilized mixed cultures. Journal of Chemical Technology and Biotechnology, 54(2), 115–121.CrossRefGoogle Scholar
  159. 159.
    Ahmad, A., Mujeeb, M., Kapoor, R., & Panda, B. P. (2013). In situ bioconversion of compactin to pravastatin by Actinomadura species in fermentation broth of Penicillium citrinum. Chemical Papers, 67(6), 667–671.CrossRefGoogle Scholar
  160. 160.
    Park, S. R., Han, A. R., Ban, Y.-H., Yoo, Y. J., Kim, E. J., & Yoon, Y. J. (2010). Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Applied Microbiology and Biotechnology, 85(5), 1227–1239.CrossRefGoogle Scholar
  161. 161.
    Herwig, R. P. (2011). Microorganisms that degrade oil and bioremediation.Google Scholar
  162. 162.
    Nolvak, H., Sildvee, T., Kriipsalu, M., & Truu, J. (2012). Application of microbial community profiling and functional gene detection for assessment of natural attenuation of petroleum hydrocarbons in boreal subsurface. Boreal Environment Research, 17, 113–127.Google Scholar
  163. 163.
    Anthony, I. O. (2006). Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biology Reviews, 1(2), 38–50.Google Scholar
  164. 164.
    Hao, R., Lu, A., & Wang, G. (2004). Crude-oil-degrading thermo- philic bacterium isolated from an oil field. Canadian Journal of Microbiology, 14, 175–182.CrossRefGoogle Scholar
  165. 165.
    Guermouche, M., Bensalah, F., & Gray, N. (2013). Application of molecular methods as a biomarker in bioremediation studies. International Journal of Biotechnology Applications, ISSN, p. 0975–2943.Google Scholar
  166. 166.
    Wang, Z., & Stout, S. (2010). Oil spill environmental forensics: Fingerprinting and source identification. Burlington: Academic.Google Scholar
  167. 167.
    Pauzi Zakaria, M., Okuda, T., & Takada, H. (2001). Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution. Marine Pollution Bulletin, 42(12), 1357–1366.CrossRefGoogle Scholar
  168. 168.
    Oliveira, C. R., Ferreira, A. A., Oliveira, C. J., Azevedo, D. A., Santos Neto, E. V., & Aquino Neto, F. R. (2012). Biomarkers in crude oil revealed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry: depositional paleoenvironment proxies. Organic Geochemistry, 46, 154–164.CrossRefGoogle Scholar
  169. 169.
    Shirani, M., Mirvaghefi, A., Farahmand, H., & Abdollahi, M. (2012). Biomarker responses in mudskipper (Periophthalmus waltoni) from the coastal areas of the Persian Gulf with oil pollution. Environmental Toxicology and Pharmacology, 34(3), 705–713.CrossRefGoogle Scholar
  170. 170.
    Lee, K., Stoffyn-Egli, P., Tremblay, G. H., Owens, E. H., Sergy, G. A., Guénette, C. C., & Prince, R. C. (2003). Oil–mineral aggregate formation on oiled beaches: natural attenuation and sediment relocation. Spill Science & Technology Bulletin, 8(3), 285–296.CrossRefGoogle Scholar
  171. 171.
    Collier, T. K., Chiang, M., Au, D., & Rainbow, P. S. (2012). Biomarkers currently used in environmental monitoring. In Ecological biomarkers: Indicators of ecotoxicological effects (pp. 385–410). CRC Press: Boca Raton.CrossRefGoogle Scholar
  172. 172.
    Yang, C., Wang, Z., Hollebone, B., Brown, C., Landriault, M., Fieldhouse, B., & Yang, Z. (2012). Application of light petroleum biomarkers for forensic characterization and source identification of spilled light refined oils. Environmental Forensics, 13(4), 298–311.CrossRefGoogle Scholar
  173. 173.
    Wang, Z., & Fingas, M. F. (2003). Development of oil hydrocarbon fingerprinting and identification techniques. Marine Pollution Bulletin, 47(9), 423–452.CrossRefGoogle Scholar
  174. 174.
    Jacquot, F., Guiliano, M., Doumenq, P., Munoz, D., & Mille, G. (1996). In vitro photooxidation of crude oil maltenic fractions: evolution of fossil biomarkers and polycyclic aromatic hydrocarbons. Chemosphere, 33(4), 671–681.CrossRefGoogle Scholar
  175. 175.
    Wang, Z., Fingas, M., & Sergy, G. (1994). Study of 22-year-old Arrow oil samples using biomarker compounds by GC/MS. Environmental Science & Technology, 28(9), 1733–1746.CrossRefGoogle Scholar
  176. 176.
    Xianqing, L., Dujie, H., Youjun, T., Guoyi, H., & Bo, X. (2003). Molecular geochemical evidence for the origin of natural gas from dissolved hydrocarbon in Ordovician formation waters in central Ordos Basin. Chinese Journal of Geochemistry, 22(3), 193–202.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Firouz Abbasian
    • 1
    Email author
  • Robin Lockington
    • 1
  • Megharaj Mallavarapu
    • 1
  • Ravi Naidu
    • 1
  1. 1.Centre for Environmental Risk Assessment and Remediation (CERAR), Division of Information Technology, Engineering and the EnvironmentUniversity of South Australia (UniSA)AdelaideAustralia

Personalised recommendations