Applied Biochemistry and Biotechnology

, Volume 176, Issue 3, pp 647–669 | Cite as

Obesity and Clinical Riskiness Relationship: Therapeutic Management by Dietary Antioxidant Supplementation—a Review

  • Hanaa A. Hassan
  • Nermin E. El-Gharib


Obesity is a global health problem affecting all age groups, leading to many complications such as type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, atherosclerosis, and stroke. Physiologically, obesity arises from metabolic changes in the tissues and organs of the human body; these changes result in an imbalance between energy intake and energy expenditure, which in turn results in increased fat accumulation in adipose tissue. Such fat accumulation predisposes individuals to development of several health problems. Two different obesity treatment drugs are currently on the market; Orlistat, which reduces intestinal fat absorption via inhibiting pancreatic lipase, and Sibutramine, an anorectic or appetite suppressant. Both drugs have hazardous side effects, including increased blood pressure, dry mouth, constipation, headache, and insomnia. For this reason, a wide variety of natural materials have been explored for their obesity treatment potential. Therefore, the present review focuses on the safety and efficacy of some herbal medicines in the management of obesity through covering their beneficial effects and mechanism of action.


Obesity Diseases-associated obesity Diabetes Cardiovascular disease Atherosclerosis Dietary natural antioxidants Herbal medicine 


Conflict of Interest



  1. 1.
    Cheng, M. L., Zhao, S. M., Li, W. Z., Zhang, X., Ge, C. R., Duan, G., & Gao, S. Z. (2010). Anti-adipocyte scFv-Fc antibody suppresses subcutaneous adipose tissue development and affects lipid metabolism in minipigs. Applied Biochemistry and Biotechnology, 162, 687–697.Google Scholar
  2. 2.
    Aronne, L. J., & Segal, K. R. (2002). Adiposity and fat distribution outcome measures: assessment and clinical implications. Obesity Journal, 10, 14–21.Google Scholar
  3. 3.
    Bajari, T. M., Nimpf, J., & Schneider, W. J. (2004). Role of leptin inreproduction. Journal of Current Opinion Lipidology, 15, 315–319.Google Scholar
  4. 4.
    Baskin, D. G., Breininger, J. F., & Schwartz, M. W. (1999). Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes Journal, 48, 828–833.Google Scholar
  5. 5.
    Jabeen, A., Khan, U. A., & Lodhi, G. M. (2011). Effects of simvastatin on lipid profile and nerve conduction velocity in obese sprague dawley rats. Journal of Ayub Medical College, 23, 36–39.Google Scholar
  6. 6.
    Bray, G. A. (2004). How do we get fat? An epidemiologic and metabolic approach. Clinical Dermatology, 22, 281–288.Google Scholar
  7. 7.
    Ellacott, K. L., Murphy, J. G., Marks, D. L., & Cone, R. D. (2007). Obesity-induced inflammation in white adipose tissue is attenuated by loss of melanocortin-3 receptor signaling. Journal of Endocrinology, 148, 6186–6194.Google Scholar
  8. 8.
    Bray, G. A. (2002). The underlying basis for obesity: relationship to cancer. Journal of Nutrition, 132, 3451–3455.Google Scholar
  9. 9.
    Morrill, A. C., & Chinn, C. D. (2004). The obesity epidemic in the United States. Journal of Public Health Policy, 25, 353–366.Google Scholar
  10. 10.
    Mobbs, C. V., Moreno, C. L., & Poplawski, M. (2013). Metabolic mystery: aging, obesity, diabetes, and the ventromedial hypothalamus. Endocrinology and Metabolism, 24, 488–494.Google Scholar
  11. 11.
    Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., & Dietz, W. H. (1999). The disease burden associated with over-weight and obesity. Journal of American Medical Association, 282, 1523–1529.Google Scholar
  12. 12.
    Gautier, A., Roussel, R., Ducluzeau, P. H., Lange, C., Vol, S., Balkau, B., & Bonnet, F. (2010). Increases in waist circumference and weight as predictors of type 2 diabetes in individuals with impaired fasting glucose: influence of baseline BMI. Diabetes Care, 33, 1850–1852.Google Scholar
  13. 13.
    Colditz, G. A., Willett, W. C., Rotnitzky, A., & Manson, J. E. (1995). Weight gain as a risk factor for clinical diabetes mellitus in women. Annual International Medical, 122, 481–486.Google Scholar
  14. 14.
    Koh-Banerjee, P., Wang, Y., Hu, F. B., Spiegelman, D., Willett, W. C., & Rimm, E. B. (2004). Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. American Journal of Epidemiology, 159, 1150–1159.Google Scholar
  15. 15.
    Guh, D. P., Zhang, W., Bansback, N., Amarsi, Z., Birmingham, C. L., & Anis, A. H. (2009). The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. Bio-Med Central and Public Health, 9, 88.Google Scholar
  16. 16.
    Bayturan, O., Tuzcu, E. M., & Lavoie, A. (2010). The metabolic syndrome, its component risk factors, and progression of coronary atherosclerosis. Archives of Internal Medicine, 170, 478–484.Google Scholar
  17. 17.
    Jena, P. K., Singh, S., Prajapati, B., Nareshkumar, G., Mehta, T., & Seshadri, S. (2014). Impact of targeted specific antibiotic delivery for gut microbiota modulation on high-F. Applied Biochemistry and Biotechnology, 172, 3810–3826.Google Scholar
  18. 18.
    Basciano, H., Federico, L., & Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition and Metabology, 2, 1–14.Google Scholar
  19. 19.
    Rocha, V. Z., & Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nature Reviews Cardiology, 6, 399–409.Google Scholar
  20. 20.
    Li, G., Zhang, P., & Wang, J. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: a 20-year follow-up study. Lancet Journal, 371, 1783–1789.Google Scholar
  21. 21.
    Nisha, V. M., Anusree, S. S., Priyanka, A., & Raghu, K. G. (2014). Apigenin and quercetin ameliorate mitochondrial alterations by tunicamycin-induced ER stress in 3 T3-L1 adipocytes. Applied Biochemistry and Biotechnology, 174, 1365–1375.Google Scholar
  22. 22.
    Trayhurn, P., & Beattie, J. H. (2001). Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proceedings of the Nutrition Society, 60, 329–339.Google Scholar
  23. 23.
    Boden, G., Duan, X., Homko, C., Molina, E. J., Song, W., Perez, O., Cheung, P., & Merali, S. (2008). Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Journal of Diabetes, 57, 2438–2444.Google Scholar
  24. 24.
    Kawasaki, N., Asada, R., Saito, A., Kanemoto, S., & Imaizumi, K. (2012). Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Scientific Reports, 2, 799.Google Scholar
  25. 25.
    Xu, C., Bailly-Maitre, B., & Reed, J. C. (2005). Endoplasmic reticulum stress: cell life and death decisions. Clinical Investigation, 115, 2656–2664.Google Scholar
  26. 26.
    Bogers, R. P., Bemelmans, W. J., & Hoogenveen, R. T. (2007). Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300,000 persons. Archives of Internal Medicine, 167, 1720–1728.Google Scholar
  27. 27.
    Strazzullo, P. D., Elia, L., Cairella, G., Garbagnati, F., Cappuccio, F. P., & Scalfi, L. (2010). Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Journal Stroke, 41, 418–426.Google Scholar
  28. 28.
    McGee, D. L. (2005). Body mass index and mortality: a meta-analysis based on person-level data from twenty-six observational studies. Annual Epidemiology, 15, 87–97.Google Scholar
  29. 29.
    American Institute for Cancer Research (AIC). (2007). World cancer research fund. Food, nutrition, physical activity and the prevention of cancer. Washington: American Institute for Cancer Research.Google Scholar
  30. 30.
    Eliassen, A. H., Colditz, G. A., Rosner, B., Willett, W. C., & Hankinson, S. E. (2006). Adult weight change and risk of postmenopausal breast cancer. Journal of American Medical Association, 296, 193–201.Google Scholar
  31. 31.
    Heilbronn, L. K., & Campbell, L. V. (2008). Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Current Pharmaceutical Design, 14, 1225–1230.Google Scholar
  32. 32.
    Gustafson, B. (2010). Adipose tissue, inflammation and atherosclerosis. Journal of Atherosclerosis Thrombosis, 17, 332–341.Google Scholar
  33. 33.
    Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Journal of Natural, 444, 860–867.Google Scholar
  34. 34.
    Gesta, S., Tseng, Y. H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Journal of Cell, 131, 242–256.Google Scholar
  35. 35.
    McClean, K. M., Kee, F., Young, I. S., & Elborn, J. S. (2008). Obesity and the lung: epidemiology. Thorax Journal, 63, 649–654.Google Scholar
  36. 36.
    Beuther, D. A., & Sutherland, E. R. (2007). Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. American Journal of Respiratory and Critical Care Medicine, 175, 661–666.Google Scholar
  37. 37.
    Tuomilehto, H. P., Seppa, J. M., & Partinen, M. M. (2009). Lifestyle intervention with weight reduction: first-line treatment in mild obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine, 179, 320–327.Google Scholar
  38. 38.
    Nerfeldt, P., Nilsson, B. Y., Mayor, L., Udden, J., & Friberg, D. (2010). A two-year weight reduction program in obese sleep apnea patients. Clinical Sleep Medicine, 6, 479–486.Google Scholar
  39. 39.
    Alzheimer’s Association (2012). Alzheimer’s facts and figures. Alzheimer’s & Dementia. 2010.Google Scholar
  40. 40.
    Beydoun, M. A., Beydoun, H. A., & Wang, Y. (2008). Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obesity Reviews, 9, 204–218.Google Scholar
  41. 41.
    Profenno, L. A., Porsteinsson, A. P., & Faraone, S. V. (2010). Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biological Psychiatry, 67, 505–512.Google Scholar
  42. 42.
    Kazemipoor, M., Radzi, J. W. M., Cordell, G. A., & Yaze, I. (2012). Potential of traditional medicinal plants for treating obesity: a review. International Conference on Nutrition and Food Sciences, 39, 1–6.Google Scholar
  43. 43.
    Duthie, G. G., Gardner, P. T., & Kyle, J. A. (2003). Plant polyphenols: are they the new magic bullet? Proceeding Nutrition Society, 62, 599–603.Google Scholar
  44. 44.
    Naik, R. S., Mujumdar, A. M., & Ghaskadbi, S. (2004). Protection of liver cells from ethanol cytotoxicity by curcumin in liver slice culture in vitro. Ethnopharmacology, 95, 31–37.Google Scholar
  45. 45.
    Bengmark, S. (2006). Curcumin, an atoxic antioxidant and natural NF-B, cyclooxygenase-2, lipoxygenases, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. Journal of Parenter Enteral Nutrition, 30, 45–51.Google Scholar
  46. 46.
    Masuda, T., Hidaka, K., Shinohara, A., Maekawa, T., Takeda, Y., & Yamaguchi, H. (1999). Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products fromcurcumin. Journal of Agricultural and Food Chemistry, 47, 71–77.Google Scholar
  47. 47.
    Daniel, S., Limson, J. L., Dairam, A., Watkins, G. M., & Daya, S. (2004). Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. Inorganic Biochemistry, 98, 266–275.Google Scholar
  48. 48.
    Kuhad, A., & Chopra, K. (2007). Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. European Journal of Pharmacology, 576, 34–42.Google Scholar
  49. 49.
    Jiang, J., Wang, W., Sun, Y. J., Hu, M., Li, F., & Zhu, D. Y. (2007). Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. European Journal of Pharmacology, 561, 54–62.Google Scholar
  50. 50.
    El-Habibi, E. M., El-Wakf, A. M., & Mogall, A. (2013). Efficacy of curcumin in reducing risk of cardiovascular disease in high fat diet-fed rats. Journal of Bioanalysis and Biomedicine, 5, 66–70.Google Scholar
  51. 51.
    Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice 1–3. Journal of Nutrition, 139, 919–925.Google Scholar
  52. 52.
    Tirkey, N., Kaur, G., Vij, G., & Chopra, K. (2005). Curcumin, a diferuloylmethane, attenuates cyclosporine induced renal dysfunction and oxidative stress in rat. kidneys. Pharmacology Journal, 5, 15–25.Google Scholar
  53. 53.
    Eybl, V., Kotyzova, D., & Koutensky, J. (2006). Comparative study of natural antioxidants curcumin, resveratrol and melatonin in cadmiuminduced oxidative damage in mice. Toxicology Journal, 225, 150–156.Google Scholar
  54. 54.
    Rajakrishnan, V., Viswanathan, P., Rajasekharan, K. N., & Menon, V. P. (1999). Neuroprotective role of curcumin from Curcuma longa on ethanol-induced brain damage. Journal of Phytotherapy Research, 13, 571–574.Google Scholar
  55. 55.
    Fu, Y., Zheng, S., Lin, J., Ryerse, J., & Chen, A. (2008). Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Journal of Molecular Pharmacology, 73, 399–409.Google Scholar
  56. 56.
    Jain, S. K., Rains, J., & Jones, K. (2006). Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels. Free Radical Biology and Medicine, 41, 92–96.Google Scholar
  57. 57.
    Nguyen, K. T., Shaikh, N., Shukla, K. P., Su, S. H., Eberhart, R. C., & Tang, L. (2004). Molecular responses of vascular smooth muscle cells and phagocytes to curcumin-eluting bioresorbable stent materials. Journal of Biomaterials Applications, 25, 5333–5346.Google Scholar
  58. 58.
    Yang, J. Y., Della-Fera, M. A., Nelson-Dooley, C., & Baile, C. (2006). Molecular mechanisms of apoptosis induced by ajoene in 3 T3–L1 adipocytes. Obesity Journal, 14, 388–397.Google Scholar
  59. 59.
    Pendurthi, U. R., & Rao, L. V. (2000). Suppression of transcription factor Egr-1 by curcumin. Thrombosis Research Journal, 97, 179–189.Google Scholar
  60. 60.
    Fan, C., Wo, X., Qian, Y., Yin, J., & Gao, L. (2006). Effect of curcumin on the expression of LDL receptor in mouse macrophages. Journal of Ethnopharmacology, 105, 251–254.Google Scholar
  61. 61.
    Ramirez-Bosca, A., Soler, A., Carrion-Gutierrez, M. A., Pamies-Mira, D., Pardo Zapata, J., Diaz-Alperi, J., Bernd, A., Quintanilla Almagro, E., & Miquel, J. (2000). An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mechanisms of Ageing and Development Journal, 114, 207–210.Google Scholar
  62. 62.
    Chen, W. F., Deng, S. L., Zhou, B., Yang, L., & Liu, Z. L. (2006). Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radical Biology and Medicine, 40, 526–535.Google Scholar
  63. 63.
    El-Wakf, M. A., Hassan, A. H., & Habza, N. M. (2015). Efficacy of fenugreek to ameliorate nitrate-induced diabetes in young and adult male rats. Journal of Cytotechnology, 67, 437–447.Google Scholar
  64. 64.
    Brown, A. L., Lane, J., Holyoak, C., Nicol, B., Mayes, A. E., & Dadd, T. (2011). Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial. British Journal of Nutrition, 7, 1–10.Google Scholar
  65. 65.
    Zheng, J., Yang, B., Huang, T., Yu, Y., Yang, J., & Li, D. (2011). Green tea and black tea consumption and prostate cancer risk: an exploratory meta-analysis of observational studies. Nutrition and Cancer Journal, 63, 663–672.Google Scholar
  66. 66.
    Sun, C. L., Yuan, J. M., Lee, M. J., Yang, C. S., Gao, Y. T., Ross, R. K., & Yu, M. C. (2002). Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China. Carcinogenesis Journal, 23, 1497–1503.Google Scholar
  67. 67.
    Zheng, G., Sayama, K., Okubo, T., Juneja, L. & Oguni, I. (2004). Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. in vivo, 18, 55–62.Google Scholar
  68. 68.
    Ahmad, N., Fayes, D. K., Nieminen, A. L., Agarwal, R., & Mukhtar, H. (1997). Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. Journal of National Cancer Institute, 89, 1881–1889.Google Scholar
  69. 69.
    Cao, Y., & Cao, R. (1999). Angiogenesis inhibited by drinking tea. Journal of Nature, 398, 381.Google Scholar
  70. 70.
    Kono, S., Shinchi, K., Wakabayashi, K., Honjo, S., Todoroki, I., Sakurai, Y., Imanishi, K., Nishizawa, H., Ogawa, S., & Katsurada, M. (1996). Relation of green tea consumption to serum lipids and lipoproteins in Japanese men. Journal of Epidemiology, 6, 128–133.Google Scholar
  71. 71.
    Bettuzzi, S., Brausi, M., Rizzi, F., Castagnetti, G., Peracchia, G., & Corti, A. (2006). Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Journal of Cancer Research, 66, 1234–1240.Google Scholar
  72. 72.
    Kao, Y. H., Hiipakka, R. A., & Liao, S. (2000). Modulation of obesity by a green tea catechin. American Journal of Clinical Nutrition, 72, 1232–1234.Google Scholar
  73. 73.
    Rumpler, W., Seale, J., Clevidence, B., Judd, J., Wiley, E., Yamamoto, S., Komatsu, T., Sawaki, T., Ishikura, Y., & Hosoda, K. (2001). Oolong tea increases metabolic rate and fat oxidation in men. Journal of Nutrition, 131, 2848–2852.Google Scholar
  74. 74.
    Kao, Y. H., Hiipakka, R. A., & Liao, S. (2000). Modulation of endocrine systems and food intake by green tea epigallocatechingallate. Endocrinology Journal, 141, 980–987.Google Scholar
  75. 75.
    Dulloo, A. G., Seydoux, J., Girardier, L., Chantre, P., & Vandermander, J. (2000). Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. International Journal of Obesity, 24, 252–258.Google Scholar
  76. 76.
    Kobayashi, K., Nagato, Y., Aoi, N., Juneja, L. R., Kim, M., Yamamoto, T., & Sugimoto, S. (1998). Effects of L-theanine on the release of brain waves in human volunteers. Nippon Nogeikagaku Kaishi Journal, 72, 153–157.Google Scholar
  77. 77.
    Yokogoshi, H., Kobayashi, M., Mochizuki, M., & Terashima, T. (1998). Effect of theanine, Á glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochemical Research Journal, 23, 667–673.Google Scholar
  78. 78.
    Kakuda, T., Nozawa, A., Unno, T., Okamura, N., & Okai, O. (2000). Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat. Bioscience Biotechnology Biochemistry, 64, 287–293.Google Scholar
  79. 79.
    Peyron, L. (2002). Production of bitter orange neroli and pettigrain oils. In J. Dugo & A. DiGiacomo (Eds.), Citrus: The genus citrus. London & New York: Taylor & Francis.Google Scholar
  80. 80.
    Bent, S., Padula, A., & Nehuaus, J. (2004). Safety and efficacy of citrus aurantium for weight loss. American Journal of Cardiology, 94, 1359–1361.Google Scholar
  81. 81.
    Preuss, H. G., DiFernando, D., Bagchi, M., & Bagchi, D. (2002). Citrus aurantium as a thermogenic, weight-reduction replacement for ephedra: an overview. Journal of Medicine, 33, 247–264.Google Scholar
  82. 82.
    Carpene, C., Galitzky, J., Fontana, E., Atgie, C., Lafontan, M., & Berlan, M. (1999). Selective activation of beta3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. NaunynSchmiedebergs Archives Pharmacology, 359, 310–321.Google Scholar
  83. 83.
    Bui, L. T., Nguyen, D. T., & Ambrose, P. J. (2006). Blood pressure and heart rate effects following a single dose of bitter orange. Annals Pharmacotherapy, 40, 53–57.Google Scholar
  84. 84.
    Stohs, S. J., Preuss, H. G., & Shara, M. (2012). A review of the human hlinical studies involving Citrus aurantium (Bitter Orange) extract and its primary protoalkaloid p-Synephrine. International Journal of Medical Sciences, 9, 527–538.Google Scholar
  85. 85.
    Arias, B. A., & Ramón-Laca, L. (2005). Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. Journal of Ethnopharmacology, 97, 89–95.Google Scholar
  86. 86.
    Slezak, T., Francis, P. S., Anastos, N., & Barnett, N. W. (2007). Determination of synephrine in weight-loss products using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Journal of Analytica Chimica Acta, 593, 98–102.Google Scholar
  87. 87.
    Haaz, S., Fontaine, K. R., Cutter, G., Limdi, N., Perumean-Chaney, S., & Allison, D. B. (2006). Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: an update. Obesity Review, 7, 79–88.Google Scholar
  88. 88.
    Stohs, S. J., Preuss, H. G., & Shara, M. A. (2011). A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects. Oxidative Medicine and Cellular Longevity, 2011, 1–9.Google Scholar
  89. 89.
    Carai, M. A., Fantini, N., Loi, B., Colombo, G., Riva, A., & Morazzoni, P. (2009). Potential efficacy of preparations derived from Phaseolus vulgaris in the control of appetite, energy intake, and carbohydrate metabolism. Diabetes Metabolic Syndrome and Obesity, 2, 145–153.Google Scholar
  90. 90.
    Bazzano, L. A., He, J., Ogden, L. G., Loria, C. M., & Whelton, P. K. (2003). Dietary fiber intake and reduced risk of coronary heart disease in US men and women: the national health and nutrition examination survey I epidemiologic follow-up study. Archives of Internal Medicine, 163, 1897–1904.Google Scholar
  91. 91.
    Queiroz, K. S., de Oliveira, A. C., & Helbig, E. (2002). Soaking the common bean in a domestic preparation reduced the contents of raffinose-type oligosaccharides but did not interfere with nutritive value. Journal of Nutritional Science and Vitaminology, 48, 283–289.Google Scholar
  92. 92.
    Barrett, M. L., & Udani, J. K. (2011). A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutritional Journal, 10, 24–29.Google Scholar
  93. 93.
    McIntosh, M., & Miller, C. A. (2001). Diet containing food rich in soluble and insoluble fiber improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutrition Review, 59, 52–55.Google Scholar
  94. 94.
    Gibson, L. & Benson, G. (2002). Origin, history, and uses of oat (Avena sativa) and wheat (Triticum aestivum). Iowa State University. Department of Agronomy.Google Scholar
  95. 95.
    Kurtz, E. S., & Wallo, W. (2007). Colloidal oat meal: history, chemistry and clinical properties. Journal of Drugs Dermatology, 6, 167–170.Google Scholar
  96. 96.
    Vader, L. W., Stepniak, D. T., & Bunnik, E. M. (2003). Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology Journal, 125, 1105–1113.Google Scholar
  97. 97.
    Tapola, N., Karvonen, H., Niskanen, L., Mikola, M., & Sarkkinen, E. (2005). Glycemic responses of oat bran products in type 2 diabetic patients. Journal of Nutrition Metabolism and Cardiovascular Diseases, 15, 255–261.Google Scholar
  98. 98.
    Hassan, H. A. (2007). Therapeutic effect of oat (Avena sativa L) grains and atorvastatin drug against physiological alterations on lipids metabolism and oxidative stress in cholesterol-fed rats. Egypt Journal of Zoology, 48, 191–207.Google Scholar
  99. 99.
    Queenan, K. M., Stewart, M. L., Smith, K. N., Thomas, W., Fulcher, R. G., & Slavin, J. L. (2007). Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutrition Journal, 6, 1–6.Google Scholar
  100. 100.
    Ellegård, L., & Andersson, H. (2007). Oat bran rapidly increases bile acid excretion and bile acid synthesis: an ileostomy study. European Journal of Clinical Nutrition, 61, 938–945.Google Scholar
  101. 101.
    El-Wakf, M. A., Hassan, A. H., El-komy, M. M., & Amr, M. M. (2011). Role of dietary fibers in the management of diabetes induced heart disease in male rats. Journal of American Science, 7, 638–649.Google Scholar
  102. 102.
    Poppitt, S. D. (2007). Soluble fibre oat and barley beta-glucan enriched products: can we predict cholesterol-lowering effects? British Journal of Nutrition, 97, 1049–1050.Google Scholar
  103. 103.
    Arun, M., & Asha, V. V. (2007). Preliminary studies on antihepatotoxic effect of Physalisperuviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats. Journal of Ethnopharmacology, 111, 110–114.Google Scholar
  104. 104.
    Wu, S. J., Tsai, J. Y., Chang, S. P., Lin, D. L., Wang, S. S., Huang, S. N., & Ng, L. T. (2006). Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalisperuviana. Journal of Ethnopharmacology, 108, 407–413.Google Scholar
  105. 105.
    Wu, S. J., Ng, L. T., Lin, D. L., Wang, S. S., & Lin, C. C. (2004). Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and mitochondrial signalling transduction pathway. Cancer Letters Journal, 215, 199–208.Google Scholar
  106. 106.
    Mayorga, H., Knapp, H., Winterhalter, P., & Duque, C. (2001). Glycosidically bound flavor compounds of cape gooseberry (Physalisperuviana L.). Journal of Agricultural and Food Chemistry, 49, 1904–1908.Google Scholar
  107. 107.
    Gutierrez, M. S., Trinchero, G. D., Cerri, A. M., Vilella, F., & Postharvest, G. O. (2008). Different responses of goldenberry fruit treated at four maturity stages with the ethylene antagonist 1-methylcyclopropene. Journal of Postharvest Biology and Technology, 48, 199–205.Google Scholar
  108. 108.
    Ramadan, M. F., Zayed, R., Abozid, M., & Asker, M. M. S. (2011). Apricot and pumpkin oils reduce plasma cholesterol and triacylglycerol concentrations in rats fed a highfat diet. Grasas Aceites Journal, 62, 443–452.Google Scholar
  109. 109.
    Ramadan, M. F., & Morsel, J. T. (2003). Oil goldenberry (Physalisperviana L.). Journal of Agricultural and Food Chemistry, 51, 969–974.Google Scholar
  110. 110.
    Ramadan, M. F., & Mörsel, J. T. (2009). Oil extractability from enzymatically-treated goldenberry (Physalisperuviana L.) pomace: range of operational variables. International Journal of Food Science Technology, 44, 435–444.Google Scholar
  111. 111.
    Wang, I. K., Lin-Shiau, S. Y., & Lin, J. K. (1999). Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaremia HL-60 cells. European Journal of Cancer, 35, 1517–1525.Google Scholar
  112. 112.
    Sgaroba, M. A., & Ramadan, F. M. (2011). Rheological behavior and physiochemical characteristics of goldenberry (Physalis Peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservation, 35, 201–219.Google Scholar
  113. 113.
    Ramadan, M. F., & Mörsel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalisperuviana L.) juice. Journal of Science Food Agriculture, 87, 452–460.Google Scholar
  114. 114.
    Ramadan, M. F. (2012). Physalisperuvianapomace suppresses high-cholesterol diet-induced hypercholesterolemia in rats. International Journal of Fats and Oils, 63, 411–422.Google Scholar
  115. 115.
    Ferretti, G., Bacchetti, T., Belleggia, A., & Neri, D. (2010). Cherry antioxidants: from farm to table. Molecules Journal, 15, 6993–7005.Google Scholar
  116. 116.
    Martin, K. R., & Burrell, L. (2010). 100% tart cherry juice reduces pro-inflammatory biomarkers in verweight and obese subjects. Journal of Federation American Society Experimental Biology, 24, 15.Google Scholar
  117. 117.
    Seymour, E. M., Singer, A. A., & Kirakosyan, A. (2008). Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator activated receptors in rats with intake of tart cherry. Journal of Medicinal Food, 11, 252–259.Google Scholar
  118. 118.
    Coles, K. (2011). The Effects of 100% Tart cherry juice on plasma lipid values and markers of inflammation in overweight and obese subjects by A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science.Google Scholar
  119. 119.
    Pittler, M. H., & Ernst, E. (2005). Complementary therapies for reducing body weight: a systematic review. International Journal of Obesity, 29, 1030–1038.Google Scholar
  120. 120.
    Abdullaev, F., & Espinosa-Aguirre, J. (2004). Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detection and Prevention, 28, 426–432.Google Scholar
  121. 121.
    Charles, D. J. (2013). Saffron. In antioxidant properties of spices, herbs and other sources (pp. 509–520). New York: Springer.Google Scholar
  122. 122.
    Poma, A., Fontecchio, G., Carlucci, G., & Chichiricco, G. (2012). Anti-inflammatory properties of drugs from saffron crocus. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 11, 37–51.Google Scholar
  123. 123.
    Kamalipour, M., & Akhondzadeh, S. (2011). Cardiovascular effects of saffron: an evidence-based review. Journal Tehran University Heart Center, 6, 59–61.Google Scholar
  124. 124.
    Shirali, S., Zahra, B. S., & Nakhjavani, M. (2012). Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytotherapy Research, 27, 1042–1047.Google Scholar
  125. 125.
    Imenshahidi, M., Hosseinzadeh, H., & Javadpour, Y. (2010). Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Journal of Phytotherapy Research, 24, 990–994.Google Scholar
  126. 126.
    Sheng, L., Qian, Z., Zheng, S., & Xi, L. (2006). Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. European Journal of Pharmacology, 543, 116–122.Google Scholar
  127. 127.
    Mostafa, S., Ebrahiem, M., & Hasan, H. (2011). Studies of effect of useing Saffron, Cyperus, Manuka Honey and their combination on rats suffering from hyperglycemia (pp. 2285–2308). Cairo: Proceedings of the 6th Arab and 3rd International Annual Scientific Conference on Development of Higher Specific Education Programs in Egypt and the Arab World in the Light of Knowledge Era Requirements.Google Scholar
  128. 128.
    Hosseinzadeh, H., & Noraei, N. B. (2009). Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Journal of Phytotherapy Research, 23, 768–774.Google Scholar
  129. 129.
    Gout, B., Bourgesb, C., & Paineau-Dubreuilb, S. (2010). Satiereal, a Crocus sativus L extract, reduces snacking and increases satiety in a randomized placebo-controlled study of mildly overweight, healthy women. Journal of Nutrition Research, 30, 305–313.Google Scholar
  130. 130.
    García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M. A., & Martínez, J. A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Journal of Inflammation Research, 8, 537–552.Google Scholar
  131. 131.
    Terra, X., Montagut, G., Bustos, M., Llopiz, N., Ardèvol, A., Bladé, C., Fernández-Larrea, J., Pujadas, G., Salvadó, J., & Arola, L. (2009). Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. Journal of Nutrition Biochemical, 20, 210–218.Google Scholar
  132. 132.
    Slanc, P., Doljak, B., Kreft, S., Lunder, M., Janeš, D., & Štrukelj, B. (2009). Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Journal of Phytotherapy Research, 23, 874–877.Google Scholar
  133. 133.
    Mashmoul, M., Azlan, A., Khaza, H., Yusof, B. N., & Noor, S. M. (2013). Saffron: a natural potent antioxidant as a promising anti-obesity drug. Antioxidants Journal, 2, 293–308.Google Scholar
  134. 134.
    Tiengburanatam, N., Boonmee, A., Sangvanich, P., & Karnchanatat, A. (2010). A novel α-glucosidase inhibitor protein from the rhizomes of zingiber ottensii valeton. Applied Biochemistry and Biotechnology, 162, 1938–1951.Google Scholar
  135. 135.
    Nicollr, R., & Henein, M. (2009). Ginger (Zingiberofficinales Roscoe): a hot remedy for cardiovascular disease. International Journal of Cardiology, 131, 408–409.Google Scholar
  136. 136.
    Ali, A., & Fahmy, G. (2009). Effects of water extracts of thyme (Thymus vulgaris) and ginger (Zingiberofficinale Roscoe) on alcohol abuse. Journal of Food Chemical Toxicology, 47, 1945–1949.Google Scholar
  137. 137.
    Mahmoud, R. H., & Elnour, W. A. (2013). Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Medical and Pharmacological Science, 17, 75–83.Google Scholar
  138. 138.
    Kadnur, S., & Goyal, R. (2005). Beneficial effects of Zingiberofficinales Roscoe on fructose induced hyperlipidemia and hyperinsulinemia in rats. Indian Journal of Experimental Biology, 43, 1161–1164.Google Scholar
  139. 139.
    Gerald, B., Badreldin, H., Musbah, O., & Abderrahim, N. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiberoffcinale roscoe): a review of recent research. Journal of Food and Chemical Toxicology, 46, 409–420.Google Scholar
  140. 140.
    Hassan, H. A., & El-Gendy, A. M. (2003). Evaluation of silymarin and / or ginger effect on induced hepatotoxicity by carbon tetrachloride in male albino rats. Egyptian Journal of Hospital Medicine, 12, 101–112.Google Scholar
  141. 141.
    Shirani, G., & Ganesharanee, R. (2009). Extruded products with fenugreek (Trigonella foenum graecium), chickpea and rice: physical properties, sensory acceptability and glycaemic index. Journal of Food Engineering, 90, 44–52.Google Scholar
  142. 142.
    Moosa, A. M., Rashid, M. U., Asadi, A. Z. S., Ara, N., Uddin, M. M., & Ferdaus, A. (2006). Hypolipidemic effects of fenugreek seed powder. Bangladesh Journal of Pharmacology, 1, 64–67.Google Scholar
  143. 143.
    Renuka, C., Ramesh, N., & Saravanan, K. (2009). Evaluation of the antidiabetic effect of Trigonellafoenumgraecum seed powder on alloxan induced diabetic albino rats. International Journal of Pharmaceutical Technology Research, 1, 1580–1584.Google Scholar
  144. 144.
    Basch, E., Ulbricht, C., Kuo, G., Szapary, P., & Smith, M. (2003). Therapeutic applications of fenugreek. Alternative Medicine Review, 8, 20–27.Google Scholar
  145. 145.
    Yoshikawa, M., Murakami, T., & Komatsu, H. (1997). Medicinal food stuffs. IV. Fenugreek seed. (1): structures of trigoneosidesIa, Ib, IIa, IIb, IIIa and IIIb, new furostanolsaponins from the seeds of Indian Trigonella foenumgraecum L. Journal of Chemical and Pharmaceutical Bulletin, 45, 81–87.Google Scholar
  146. 146.
    Abd-El Mawla, A. M. A., & Osman, H. E. H. (2011). Elicitation of trigonelline and 4 -hydroxy-isoleucine with hypoglycemic activity in cell suspension cultures of Trigonella foenumgraecum L. The Open Conference Proceedings Journal, 2, 80–87.Google Scholar
  147. 147.
    Eidi, A., Eidi, M., & Sokhteh, M. (2007). Effect of fenugreek (Trigonellafoenum graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Journal of Nutrition Research, 27, 728–733.Google Scholar
  148. 148.
    Raju, J., Gupta, D., Rao, A. R., Yadava, P. K., & Baquer, N. Z. (2001). Trigonellafoenum-graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Journal of Molecular and Cellular Biochemistry, 224, 45–51.Google Scholar
  149. 149.
    Buyken, A. E., Toeller, M., Heitkamp, G., Vitelli, F., Stehle, P., Scherbaum, W. A., & Fuller, J. H. (1999). IDDM complications study group : relation of fiber intake to HbA1c and the prevalence of severe ketoacidosis and severehypoglycemia. Diabetologia Journal, 41, 882–890.Google Scholar
  150. 150.
    Lee, M., Kim, I., Kim, C., & Kim, Y. (2011). Reduction of body weight by dietary garlic is associated with an increase in uncoupling protein mRNA expression and activation of AMP-activated protein kinase in diet-induced obese mice. Journal of Nutrition, 141, 1947–1953.Google Scholar
  151. 151.
    Yeh, Y. Y., & Liu, L. (2001). Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. Journal of Nutrition, 131, 989–993.Google Scholar
  152. 152.
    Jalal, R., Bagheri, S. M., Moghimi, A., & Rasuli, M. B. (2007). Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance. Journal of Clinical Biochemistry and Nutrition, 41, 218–223.Google Scholar
  153. 153.
    Sobenin, I. A., Andrianova, I. V., Fomchenkov, I. V., Gorchakova, T. V., & Orekhov, A. N. (2009). Time-released garlic powder tablets lower systolic and diastolic blood pressure in men with mild and moderate arterial hypertension. Journal of Hypertension Research, 32, 433–437.Google Scholar
  154. 154.
    Milner, J. A. (2001). A historical perspective on garlic and cancer. Journal of Nutrition, 131, 1027–1031.Google Scholar
  155. 155.
    Hassan, H. A., El-Agmy, S. M., Gaur, R., Fernando, L. A., Raj, H. G., & Ouhtit, A. (2009). In vivo evidence of hepato-and-reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. International Journal of Biology Science, 5, 249–255.Google Scholar
  156. 156.
    Jisawa, H., Suma, K., Origuchi, K., Kumagai, H., Seki, T., & Ariga, T. (2008). Biological and chemical stability of garlic-derived allicin. Journal of Agricultural and Food Chemistry, 56, 4229–4235.Google Scholar
  157. 157.
    Han, C. Y., Ki, S. H., Kim, Y. W., Noh, K., Lee, Y., Kang, B., Ryu, J. H., Jeon, R., Kim, E. H., & Hwang, S. J. (2011). Ajoene, a stable garlic by-product, inhibits high fat diet-induced hepatic steatosis and oxidative injury through LKB1-dependent AMPK activation. Antioxidants & Redox Signaling Journal, 14, 187–202.Google Scholar
  158. 158.
    Keophiphath, M., Priem, F., Jacquemond-Collet, I., Clément, K., & Lacasa, D. (2009). 1,2-Vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes. Journal of Nutrition, 139, 2055–2060.Google Scholar
  159. 159.
    Palaniswamy, U. R., McAvoy, R. J., & Bible, B. B. (2001). Stage of harvest and polyunsaturated essential fatty acid concentrations in purslane (Portulaca oleraceae) leaves. Journal of Agricultural and Food Chemistry, 49, 3490–3493.Google Scholar
  160. 160.
    Mohammadi, A., & Oshaghi, E. A. (2014). Effect of garlic on lipid profile and expression of LXR alpha in intestine and liver of hypercholesterolemic mice. Journal of Diabetes & Metabolic Disorders, 13, 20.Google Scholar
  161. 161.
    Kwon, M. J., Song, Y. S., Choi, M. S., Park, S. J., Jeong, K. S., & Song, Y. O. (2003). Cholesteryl ester transfer protein activity and atherogenic parameters in rabbits supplemented with cholesterol and garlic powder. Life Science Journal, 72, 2953–2964.Google Scholar
  162. 162.
    Lin, M. C., Wang, E. J., Lee, C., Chin, K. T., Liu, D., Chiu, J. F., & Kung, H. F. (2002). Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine. Journal of Nutrition, 132, 1165–1168.Google Scholar
  163. 163.
    Chan, K., Islam, M. W., Kamil, M., Radakrishnan, R., Zakaria, M. N., Habibullah, M., & Attas, A. (2000). The analgesic and anti-inflammatory effects of portulaca oleracea L Subsp. Sativa (Haw.) Celak. Journal of Ethnopharmacology, 73, 445–451.Google Scholar
  164. 164.
    Simopoulos, A. P., Norman, A. H., Gillaspy, E. J., & Duke, A. J. (1992). Common purslane: a source of omega-3-fatty acids and antioxidants. American Journal of College Nutrition, 11, 374–382.Google Scholar
  165. 165.
    Hussein, A. M. (2010). Purslane extract effects on obesity-induced diabetic rats fed a high-fat diet. Malaysian Journal of Nutrition, 16, 419–429.Google Scholar
  166. 166.
    El-Gendy, A. M., & Hassan, H. A. (2005). The modulatory role of purslane (Portulaca oleraceae) on age-linked changes in old male rats. Egyptian Journal of Biomedical Science, 18, 255–268.Google Scholar
  167. 167.
    Barakat, L. A. A., & Mahmoud, R. H. (2011). The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. North American Journal of Medical Sciences, 3, 411–417.Google Scholar
  168. 168.
    Romero, A., West, K., Zern, T., & Fernandez, M. (2002). The seeds from plantago ovate lower plasma lipids by altering hepatic and bile acid metabolism in Guinea pigs. Journal of Nutrition, 132, 1194–1198.Google Scholar
  169. 169.
    Venkateson, N., Devaraj, S., & Devaraj, H. (2003). Increased binding of LDL and VLDL to apo B, E receptors of hepatic plasma membrane of rats treated with fibernat. European Journal of Nutrition, 42, 262–271.Google Scholar
  170. 170.
    Daniel, M. (2006). Science publishers, Enfield, NH;. Medicinal Plants: Chemistry and Properties; p. 184.Google Scholar
  171. 171.
    Isin, Y., Ismail, T., Askim, H., & Tijen, D. (2007). Salinity tolerance of (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Journal of Environmental and Experimental Botany, 61, 49–57.Google Scholar
  172. 172.
    Movahedian, A., Ghannadi, A., & Vashirnia, M. (2007). Hypocholesterolemic effects of purslane extract on serum lipids in rabbits fed with high cholesterol levels. International Journal of Pharmacology, 3, 285–289.Google Scholar
  173. 173.
    Wurochekke, A., Anthony, A., & Obidah, W. (2008). Biochemical effects on the liver and kidney of rats administered aqueous stem bark extract of Xemenia Americana. African Journal of Biotechnology, 7, 2777–2780.Google Scholar
  174. 174.
    Shehata, M. S. M., & Soltan, S. A. (2012). The effects of purslane and celery on hypercholesterolemic mice. Journal of World Dairy Food Sciences, 7, 212–221.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Physiology Division, Zoology Department, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations