Applied Biochemistry and Biotechnology

, Volume 175, Issue 8, pp 3800–3812 | Cite as

Manganese Peroxidases from Ganoderma applanatum Degrade β-Carotene Under Alkaline Conditions

  • Isabel LanfermannEmail author
  • Diana Linke
  • Manfred Nimtz
  • Ralf G. Berger


A β-carotene-degrading enzyme activity was observed in liquid cultures of the basidiomycete Ganoderma applanatum. Supplementing the cultures with β-carotene induced the bleaching activity. Purification via hydrophobic interaction, ion exchange and size exclusion chromatography followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) resulted in a single protein band. LC-ion-trap-MS analyses and gene amplification identified two manganese peroxidase isoenzymes with 97.8 % identity on the amino acid level. These showed an estimated molecular mass of 48 kDa and an isoelectric point of 2.6. Properties not yet described for other manganese peroxidases were hydrogen-peroxide-independent catalysis and two maxima of the bleaching activity, a distinct one at pH 5 and a lower one at pH 8. During simulated washing studies, the applicability of the isoenzymes for the brightening of carotenoids under alkaline conditions was proven. The new enzymes may replace common bleaching agents to produce environmentally more compatible detergent formulations.


Biocatalysis Enzyme activity Carotene degradation Manganese peroxidase Purification Filamentous fungi Ganoderma applanatum Washing Alkaline activity 



Carotene-degrading activity


Hydrophobic interaction chromatography


Size exclusion chromatography


Mass spectrometry


Ganoderma applanatum


Manganese peroxidase



The authors gratefully acknowledge the essential support from Henkel AG & Co. KGaA, 328 Düsseldorf, Germany. Furthermore, we wish to thank R. H. Leonhardt for his valuable assistance in molecular biology.


  1. 1.
    Jurado, E., Bravo, V., Luzón, G., Fernández-Serrano, M., García-Román, M., Altmajer-Vaz, D., & Vicaria, J. M. (2007). Hard-surface cleaning using lipases: enzyme-surfactant interactions and washing tests. Journal of Surfactants and Detergents, 10, 61–70.CrossRefGoogle Scholar
  2. 2.
    Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15–32.CrossRefGoogle Scholar
  3. 3.
    Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications. Applied Biochemistry and Biotechnology, 118, 155–170.CrossRefGoogle Scholar
  4. 4.
    Borenstein, B., & Bunnell, R. H. (1966). Carotenoids: properties, occurrence, and utilization in foods. In C. O. Chichester, E. M. Mrak, G. F. Stewart (eds.), Advances in Food Research, vol. 15 (pp. 195–276). New York: Academic Press.Google Scholar
  5. 5.
    Gélinas, P., Poitras, E., McKinnon, C. M., & Morin, A. (1998). Oxido-reductases and lipases as dough-bleaching agents. Cereal Chemistry, 75, 810–814.CrossRefGoogle Scholar
  6. 6.
    Zorn, H., Langhoff, S., Scheibner, M., & Berger, R. G. (2003). Cleavage of β, β-carotene to flavor compounds by fungi. Applied Microbiology and Biotechnology, 62, 331–336.CrossRefGoogle Scholar
  7. 7.
    Mendonça Maciel, M. J., Castro e Silva, A., Telles Ribeiro, H. C. (2010). Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electronic Journal of Biotechnology, 13(6). doi: 10.2225/vol13-issue6-fulltext-2.
  8. 8.
    Bibi, I., Bhatti, H. N., & Asgher, M. (2009). Decolourisation of direct dyes with manganese peroxidase from white rot basidiomycete Ganoderma lucidum-IBL-5. Canadian Journal of Chemical Engineering, 87, 435–440.CrossRefGoogle Scholar
  9. 9.
    Bibi, I., & Bhatti, H. (2012). Enhanced biodecolorization of reactive dyes by basidiomycetes under static conditions. Applied Biochemistry and Biotechnology, 166, 2078–2090.CrossRefGoogle Scholar
  10. 10.
    Ma, L., Zhuo, R., Liu, H., Yu, D., Jiang, M., Zhang, X., & Yang, Y. (2014). Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochemical Engineering Journal, 82, 1–9.CrossRefGoogle Scholar
  11. 11.
    Scheibner, M., Hülsdau, B., Zelena, K., Nimtz, M., de Boer, L., Berger, R., & Zorn, H. (2008). Novel peroxidases of Marasmius scorodonius degrade β-carotene. Applied Microbiology and Biotechnology, 77, 1241–1250.CrossRefGoogle Scholar
  12. 12.
    Schüttmann, I., Bouws, H., Szweda, R. T., Suckow, M., Czermak, P., & Zorn, H. (2014). Induction, characterization, and heterologous expression of a carotenoid degrading versatile peroxidase from Pleurotus sapidus. Journal of Molecular Catalysis B: Enzymatic, 103, 79–84.CrossRefGoogle Scholar
  13. 13.
    Zelena, K., Hardebusch, B., Hülsdau, B., Berger, R. G., & Zorn, H. (2009). Generation of norisoprenoid flavors from carotenoids by fungal peroxidases. Journal of Agricultural and Food Chemistry, 57, 9951–9955.CrossRefGoogle Scholar
  14. 14.
    Zorn, H., Langhoff, S., Scheibner, M., Nimtz, M., & Berger, R. G. (2003). A peroxidase from Lepista irina cleaves β, β-carotene to flavor compounds. Biological Chemistry, 384, 1049.CrossRefGoogle Scholar
  15. 15.
    Grbavčić, S., Bezbradica, D., Izrael-Živković, L., Avramović, N., Milosavić, N., Karadžić, I., & Knežević-Jugović, Z. (2011). Production of lipase and protease from an indigenous pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresource Technology, 102, 11226–11233.CrossRefGoogle Scholar
  16. 16.
    Britton, H. T. S., & Robinson, R. A. (1931). CXCVIII.-Universal buffer solutions and the dissociation constant of veronal. Journal of the Chemical Society, 1456–1462.Google Scholar
  17. 17.
    Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., & Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40, W597–W603.CrossRefGoogle Scholar
  18. 18.
    Altschul, S. F., Gish, W., Miller, W., Meyers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefGoogle Scholar
  19. 19.
    Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V., Robertson, C. L., Song, J. S., Thanki, N., Yamashita, R. A., Zhang, D., Zhang, N., Zheng, C., & Bryant, S. H. (2011). CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Research, 39, D225–D229.CrossRefGoogle Scholar
  20. 20.
    Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.CrossRefGoogle Scholar
  21. 21.
    NetNGlyc 1.0 Server 2004. Available from: Accessed 2 October 2013.
  22. 22.
    Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T. B. G., Lavrsen, K., Dabelsteen, S., Pedersen, N. B., Marcos-Silva, L., Gupta, R., Paul Bennett, E., Mandel, U., Brunak, S., Wandall, H. H., Levery, S. B., & Clausen, H. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO Journal, 32, 1478–1488.CrossRefGoogle Scholar
  23. 23.
    Maeda, Y., Kajiwara, S., & Ohtaguchi, K. (2001). Manganese peroxidase gene of the perennial mushroom Elfvingia applanata: cloning and evaluation of its relationship with lignin degradation. Biotechnology Letters, 23, 103–109.CrossRefGoogle Scholar
  24. 24.
    Nie, G., Reading, N. S., & Aust, S. D. (1999). Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 365, 328–334.CrossRefGoogle Scholar
  25. 25.
    Hofrichter, M. (2002). Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30, 454–466.CrossRefGoogle Scholar
  26. 26.
    Arnao, M. B., Acosta, M., del Río, J. A., Varón, R., & García-Cánovas, F. (1990). A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochimica et Biophysica Acta, 1041, 43–47.CrossRefGoogle Scholar
  27. 27.
    Wariishi, H., Akileswaran, L., & Gold, M. H. (1988). Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry, 27, 5365–5370.CrossRefGoogle Scholar
  28. 28.
    Baranska, M., Schütze, W., & Schulz, H. (2006). Determination of lycopene and β-carotene content in tomato fruits and related products: comparison of FT-raman, ATR-IR, and NIR spectroscopy. Analytical Chemistry, 78, 8456–8461.CrossRefGoogle Scholar
  29. 29.
    Maurer, K.-H., & Flickinger, M. C. (2009). Enzymes, detergent, in encyclopedia of industrial biotechnology (Vol. 1, pp. 1–16). Weinheim: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Isabel Lanfermann
    • 1
    Email author
  • Diana Linke
    • 1
  • Manfred Nimtz
    • 2
  • Ralf G. Berger
    • 1
  1. 1.Institut für LebensmittelchemieLeibniz Universität HannoverHannoverGermany
  2. 2.Helmholtz Zentrum für InfektionsforschungBraunschweigGermany

Personalised recommendations