Applied Biochemistry and Biotechnology

, Volume 175, Issue 7, pp 3531–3541 | Cite as

Influence of Exopolymeric Materials on Bacterially Induced Mineralization of Carbonates

  • Amrita Bains
  • Navdeep Kaur Dhami
  • Abhijit Mukherjee
  • M. Sudhakara Reddy
Article

Abstract

Microbially induced calcium carbonate precipitation is an immensely growing technology for restoration and remediation of building materials. The investigation on role of exopolymeric substances and biofilms in microbially induced calcium carbonate precipitation suggested that these exopolymeric materials play major role in carbonate precipitation in Bacillus megaterium SS3 along with enzymes urease and carbonic anhydrase. The concentration of EPS directly affects the precipitation of carbonate precipitates which might be due to capturing of Ca2+ ions by acting as nucleation site. Components of the media and presence of calcium also play crucial role in production of exopolymeric substances along with affecting the morphology of carbonate precipitates.

Keywords

Bacillus megaterium EPS CPS Biofilm Microbial carbonate precipitation 

References

  1. 1.
    González-Muñoz, M. T., Rodriguez-Navarro, C., Martínez-Ruiz, F., Arias, J. M., Merroun, M. L., & Rodriguez-Gallego, M. (2011). Geological Society London Special Publication, 336, 31–50.CrossRefGoogle Scholar
  2. 2.
    Novitsky, J. A. (1981). Geomicrobiology Journal, 2, 375–388.CrossRefGoogle Scholar
  3. 3.
    Rivadeneyra, M. A., Parraga, J., Delgado, R., Ramos-Cormenzana, A., & Delgado, G. (2004). FEMS Microbiology Ecology, 48, 39–46.CrossRefGoogle Scholar
  4. 4.
    Baskar, S., Baskar, R., Mauclaire, L., & Mckenzie, J. A. (2005). Current Science, 88, 1305–1308.Google Scholar
  5. 5.
    De Muynck, W., Cox, K., De Belie, N., & Verstraete, W. (2008). Constructions and Building Materials, 22, 875–885.CrossRefGoogle Scholar
  6. 6.
    Ercole, C., Bozzelli, P., Altieri, F., Cacchio, P., & Gallo, M. D. (2012). Microscopy and Microanalysis, 18, 829–839.CrossRefGoogle Scholar
  7. 7.
    Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2013). World Journal of Microbiology and Biotechnology, 29, 2397–2406.CrossRefGoogle Scholar
  8. 8.
    De Jong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L. A., Al Qabany, A., Aydilek, A., Bang, S. S., Burbank, M., Caslake, L. F., Chen, C. Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D. A. C., Martinez, B., Montoya, B. M., Nelson, D. C., Palomino, A., Renforth, P., Santamarina, J. C., Seagren, E. A., Tanyu, B., Tsesarsky, M., & Weaver, T. (2013). Geotechnique, 63, 287–301.CrossRefGoogle Scholar
  9. 9.
    Ehrlich, H. L. (1996). Chemical Geology, 132, 5–9.CrossRefGoogle Scholar
  10. 10.
    Zamarreno, D. V., Inkpen, R., & May, E. (2009). Applied and Environmental Microbiology, 75, 5981–5990.CrossRefGoogle Scholar
  11. 11.
    Rivadeneyra, M. A., Delgado, R., Delgado, G., Moral, A., Ferrer, M. R., & Ramos-Cormenzana, A. (1993). Geomicrobiology Journal, 11, 175–184.CrossRefGoogle Scholar
  12. 12.
    Douglas, S., & Beveridge, T. J. (1998). FEMS Microbiology Ecology, 26, 79–88.CrossRefGoogle Scholar
  13. 13.
    Castanier, S., Le Metayer-Levrel, G., & Perthuisot, J. P. (1999). Sedimentary Geology, 126, 9–23.CrossRefGoogle Scholar
  14. 14.
    Lian, B., Hu, Q. N., Chen, J., Ji, J. F., & Teng, H. H. (2006). Geochimica et Cosmochimica Acta, 70, 5522–5535.CrossRefGoogle Scholar
  15. 15.
    Schultze-Lam, S., Fortin, D., Davis, B. S., & Beveridge, T. J. (1996). Chemical Geology, 132, 171–181.CrossRefGoogle Scholar
  16. 16.
    Rivadeneyra, M. A., Delgado, G., Ramos-Cormenzana, A., & Delgado, R. (1998). Research in Microbiology, 149, 277–287.CrossRefGoogle Scholar
  17. 17.
    Ercole, C., Cacchio, P., Botta, A. L., Centi, V., & Lepidi, A. (2007). Microscopy and Microanalysis, 13, 42–50.CrossRefGoogle Scholar
  18. 18.
    Decho, A. W. (2009). Ecological Engineering, 30, 1–8.Google Scholar
  19. 19.
    Nichols, P. D., & Nichols, C. A. M. (2008). Journal of Microbiological Methods, 74, 33–46.CrossRefGoogle Scholar
  20. 20.
    Nielsen, P. H., & Jahn, A. (1999). In J. Wingender, T. R. Neu, & H. C. Flemming (Eds.), Springer, extraction of EPS (pp. 49–72). Berlin: Springer.Google Scholar
  21. 21.
    Bhaskar, P. V., & Bhosle, N. B. (2005). Current Science, 88, 45–53.Google Scholar
  22. 22.
    Banfield, J. F., & Zhang, H. (2001). Reviews in Mineralogy and Geochemistry, 44, 1–58.CrossRefGoogle Scholar
  23. 23.
    Bäuerlein, E. (2003). Angewandte Chemie International Edition, 42, 614–641.CrossRefGoogle Scholar
  24. 24.
    Rodriguez-Navarro, C., Rodriguez-Gallego, M., Ben Chekroun, K., & Gonzalez-Muñoz, M. T. (2003). Applied and Environmental Microbiology, 69, 2182–2193.CrossRefGoogle Scholar
  25. 25.
    Kawaguchi, T., & Decho, A. W. (2002). Journal of Crystal Growth, 240, 230–235.CrossRefGoogle Scholar
  26. 26.
    Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2013). Journal of Microbiology and Biotechnology, 23, 707–714.CrossRefGoogle Scholar
  27. 27.
    Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 433–438.CrossRefGoogle Scholar
  28. 28.
    Smith, K. S., & Ferry, J. G. (1999). Journal of Bacteriology, 181, 6247–6253.Google Scholar
  29. 29.
    Conway, B. D., Venu, V., & Speert, D. P. (2002). Journal of Bacteriology, 184, 5678–5685.CrossRefGoogle Scholar
  30. 30.
    Cerning, J., Renard, C. M. G. C., Thibault, J. F., Bouillanne, C., Landon, M., Desmazeaud, M., & Topisirovic, L. (1994). Applied and Environmental Microbiology, 60, 3914–3919.Google Scholar
  31. 31.
    Lowry, O. H., Rosebrough, M. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  32. 32.
    Dische, Z. (1962). Method Carbohydrate Chemistry, 1, 477–479.Google Scholar
  33. 33.
    Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2014). Journal of Applied Biochemistry and Biotechnology, 172, 2552–2561.CrossRefGoogle Scholar
  34. 34.
    APHA (American Public Health Association) (1989). American Public Health Association, Washington, DC.Google Scholar
  35. 35.
    Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Soil Biology and Biochemistry, 31, 1563–1571.CrossRefGoogle Scholar
  36. 36.
    Ibrahim, H. M., & Elchidir, E. E. (2011). Trends in Applied Sciences Research, 6, 121–129.CrossRefGoogle Scholar
  37. 37.
    Hammes, F., Boon, N., De Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Applied and Environmental Microbiology, 69, 4901–4909.CrossRefGoogle Scholar
  38. 38.
    Boyd, A., & Chakrabarty, A. M. (1995). Journal of Industrial Microbiology, 15, 162–168.CrossRefGoogle Scholar
  39. 39.
    Thimodo, M. (2007). Surgery, 1, 22–28.Google Scholar
  40. 40.
    Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Annual Review of Microbiology, 56, 187–209.CrossRefGoogle Scholar
  41. 41.
    Patrauchan, M. A., Sarkisova, S., Sauer, K., & Franklin, M. J. (2005). Microbiology, 151, 2885–2897.CrossRefGoogle Scholar
  42. 42.
    Tsuneda, S., Azkawa, H., Hayashi, H., Yuasa, A., & Hirata, A. (2003). FEMS Microbiology Letters, 223, 287–292.CrossRefGoogle Scholar
  43. 43.
    Rodriguez-Navarro, C., Jroundi, F., Schiro, M., Ruiz-Agudo, E., & González-Muñoz, M. T. (2012). Applied and Environmental Microbiology, 78, 4017–4029.CrossRefGoogle Scholar
  44. 44.
    Sutherland, I. W. (2001). Microbiology, 147, 3–9.Google Scholar
  45. 45.
    Jorand, N. O., et al. (1998). Water Science and Technology, 37, 307–315.CrossRefGoogle Scholar
  46. 46.
    Li, W., Liu, L. P., Zhou, P. P., Cao, L., Yu, L. J., & Jiang, S. Y. (2011). Current Science, 100, 502–508.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amrita Bains
    • 1
  • Navdeep Kaur Dhami
    • 1
  • Abhijit Mukherjee
    • 2
  • M. Sudhakara Reddy
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia
  2. 2.Department of Civil EngineeringCurtin UniversityPerthAustralia

Personalised recommendations