Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 7, pp 3507–3518 | Cite as

Improving Cell Growth and Lipid Accumulation in Green Microalgae Chlorella sp. via UV Irradiation

  • Shuyu Liu
  • Yueping Zhao
  • Li Liu
  • Xiyong Ao
  • Liyan Ma
  • Minghong Wu
  • Fang Ma
Article

Abstract

Microalgae with high biomass and high lipid content are the ideal feedstock for biodiesel production. To obtain such microalgae, ultraviolet (UV) irradiation was applied to Chlorella sp. to induce mutagenesis. The growth characteristics, total nitrogen (TN), and biochemical compositions of the control and UV mutation strains were analyzed. Compared to the control strain, the biomass for the UV mutation strain was 7.6 % higher and it presented a higher growth rate. The lipid content of the UV mutation strain showed different levels of increase and reached the maximum value of 28.1 % on day 15. Furthermore, the lipid productivity of the UV mutation strain showed a desired increase. The nitrogen consumption and Acetyl-CoA carboxylase (ACC) activity contributed to the lipid production by UV. All these results indicate that UV mutagenesis is an efficient method to improve probability for using Chlorella sp. as the potential raw material for biodiesel production.

Keywords

Microalgae Radiation UV mutagenesis Lipid Biodiesel 

Notes

Acknowledgments

This work was supported by the Open Project of State Key Laboratory of Urban Water Resource and Environment (No. HC201323) and National Natural Science Foundation of China (Nos. 50809037, 41430644, and 41273126), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13078), and Science and Technology Commission of Shanghai Municipality (13230500600), the special S&T project on treatment and control of water pollution (No. 2012ZX07201-003). The authors extend their sincere thanks to all the people in the Key Laboratory of Harbin Institute of Technology.

References

  1. 1.
    Anandarajah, K., Mahendraperumal, G., Sommerfeld, M., & Hu, Q. (2012). Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Applied Energy, 96, 371–377.CrossRefGoogle Scholar
  2. 2.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.CrossRefGoogle Scholar
  3. 3.
    Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141(1), 31–41.CrossRefGoogle Scholar
  4. 4.
    Dunahay, T. G., Jarvis, E. E., & Roessler, P. G. (1995). Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. Journal of Phycology, 31, 1004–1012.CrossRefGoogle Scholar
  5. 5.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  6. 6.
    Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629–636.CrossRefGoogle Scholar
  7. 7.
    Li, Y. J., Fei, X. W., & Deng, X. D. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199–211.CrossRefGoogle Scholar
  8. 8.
    Liang, Y., Shi, W. J., & Tian, C. Y. (2012). A review of the Method for determining total lipid content in Microalgae. Periodical of Ocean University of China, 42(5), 35–40.Google Scholar
  9. 9.
    Ma, Y. B., Wang, Z. Y., Zhu, M., Yu, C. J., Cao, Y. P., Zhang, D. Y., & Zhou, G. K. (2013). Increased lipid productivity and TAG content in Nannochloropsis by heavy-ion irradiation mutagenesis. Bioresource Technology, 136, 360–367.CrossRefGoogle Scholar
  10. 10.
    Meireles, L. A., Guedes, A., & Malcata, F. X. (2003). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnology and Bioengineering, 81(1), 50–55.CrossRefGoogle Scholar
  11. 11.
    Nigam, S., Rai, M. P., & Sharma, R. (2011). Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. American Journal of Biochemistry and Biotechnology, 7(3), 126–131.CrossRefGoogle Scholar
  12. 12.
    Ono, E., & Cuello, J. (2007). Carbon dioxide mitigation using thermophilic cyanobacteria. Biosystems Engineering, 96, 129–134.CrossRefGoogle Scholar
  13. 13.
    Small, D. P., Hüner, N., & Wan, W. (2012). Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics, 33(4), 298–308.CrossRefGoogle Scholar
  14. 14.
    Srinivas, R., & Ochs, C. (2012). Effect of UV-A irradiance on lipid accumulation in Nannochloropsis oculata. Photochemistry and Photobiology, 88(3), 684–689.CrossRefGoogle Scholar
  15. 15.
    Vigeolas, H., Duby, F., Kaymak, E., Niessen, G., Motte, P., Franck, F., & Remacle, C. (2012). Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. Journal of Biotechnology, 162(1), 3–12.CrossRefGoogle Scholar
  16. 16.
    Williams, P. J. L. B., & Laurens, L. M. (2010). Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3(5), 554–590.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Environment and Chemical EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Harbin Institute of TechnologyState Key Laboratory of Urban Water Resource and EnvironmentHarbinPeople’s Republic of China
  3. 3.Department of Chemistry and BiochemistryFlorida International UniversityMiamiUSA
  4. 4.Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of AgricultureChinese Academy of Fishery SciencesShanghaiChina

Personalised recommendations