Applied Biochemistry and Biotechnology

, Volume 175, Issue 7, pp 3231–3243 | Cite as

Evaluation of Antioxidant, Total Phenol and Flavonoid Content and Antimicrobial Activities of Artocarpus altilis (Breadfruit) of Underutilized Tropical Fruit Extracts

  • Tara Kamal Jalal
  • Idris Adewale Ahmed
  • Maryam Mikail
  • Lailuma Momand
  • Samsul Draman
  • Muhammad Lokman Md Isa
  • Mohammad Syaiful Bahari Abdull Rasad
  • Muhammad Nor Omar
  • Muhammad Ibrahim
  • Ridhwan Abdul WahabEmail author


Artocarpus altilis (breadfruit) pulp, peel and whole fruit were extracted with various solvents such as hexane, dichloromethane (DCM) and methanol. The antioxidant activity of these extracts were examined using the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test. IC50 was 55 ± 5.89 μg/ml for the pulp part of methanol extract. In the β-carotene bleaching assay, the antioxidant activity was 90.02 ± 1.51 % for the positive control (Trolox) and 88.34 ± 1.31 % for the pulp part of the fruit methanol extract. The total phenolic content of the crude extracts was determined using the Folin-Ciocalteu procedure; methanol pulp part demonstrated the highest phenol content value of 781 ± 52.97 mg GAE/g of dry sample. While the total flavonoid content was determined using the aluminium chloride colorimetric assay, the highest value of 6213.33 ± 142.22 mg QE/g was indicated by pulp part of the fruit methanol extract. The antimicrobial activity of the crude extracts was tested using disc diffusion method against pathogenic microorganisms: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia and Candida albicans. Methanol extract of pulp part was recorded to have the highest zone of inhibition against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) and MBC/minimal fungicidal concentration (MFC) for the extracts were also determined using the microdilution method ranging from 4000 to 63 μg/ml against pathogenic microbes. The MBC/MFC values varied from 250 to 4000 μg/ml. A correlation between antioxidant activity assays, antimicrobial activity and phenolic content was established. The results shows that the various parts of A. altilis fruit extracts promising antioxidant activities have potential bioactivities due to high content of phenolic compounds.


Artocarpus altilis Antioxidants DPPH Antimicrobial MIC and MBC/MFC 


  1. 1.
    Aboaba, O. O., & Efuwape, B. M. (2001). Antibacterial properties of some Nigerian species. Biochemical and Biophysical Research Communications, 13, 183–188.Google Scholar
  2. 2.
    Akinmoladun, A. C., Ibukun, E. O., Afor, E., Akinrinlola, B. L., Onibon, T. R., Akinboboye, A. O., Obuotor, E. M., & Farombi, E. O. (2007). Chemical constituents and antioxidant activity of Alstonia boonei. African Journal of Biotechnology, 6, 1197–1201.Google Scholar
  3. 3.
    Akrout, A., El Jani, H., Zammouri, T., Mighri, H., & Neffati, M. (2010). Phytochemical screening and mineral contents of annual plants growing wild in the southern of Tunisia. Journal of Phytology, 2(1), 034–040.Google Scholar
  4. 4.
    Charalampos, P., Boziaris, I. S., Kapsokefalou, M., & Komaitis, M. (2008). Natural antioxidant constituents from selected aromatic plants and their antimicrobial activity against selected pathogenic microorganisms. Food Technology and Biotechnology, 46(2), 151–156.Google Scholar
  5. 5.
    Elija, K., Adsul, V. B., Kulkarni, M. M., Deshpande, N. R., & Kashalkar, R. V. (2010). Spectroscopic determination of total phenol and flavonoid contents of Ipomoea carnea. International Journal of ChemTech Research, 2(3), 1698–1701.Google Scholar
  6. 6.
    Gazzani, G., Papetti, A., Daglia, M., Berte, F., & Gregotti, C. (1998). Protective activity of water soluble components of some common diet vegetables on rat liver microsome and the effect of thermal treatment. Journal of Agricultural and Food Chemistry, 46, 4123–4127.CrossRefGoogle Scholar
  7. 7.
    Green RJ. (2004). Antioxidant activity of peanut plant tissues. Msc.thesis, North Carolina State University, USA.Google Scholar
  8. 8.
    Halliwell B, & Gutteridge JMC. (1999). Free radical in biology and medicine. 3rd Edition. London: Oxford. 36–40 pp. 311–312.Google Scholar
  9. 9.
    Houghton, P. J., & Raman, A. (1998). Laboratory handbook for fractionation of natural extracts (p. 199). London: Chapman and Hall.CrossRefGoogle Scholar
  10. 10.
    Huda-Faujan, N., Noriham, A., Norrakiah, A. S. & Babji, A.S. ( 2009). Antioxidant activity of plants methanolic extracts containing phenolic compounds. African Journal of Biotechnology, 8(3), 484–489.Google Scholar
  11. 11.
    Jung, C., Maeder, V., Funk, F., Frey, B., Stich, E. H., & Fross, E. E. (2003). Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant and Soil, 252, 301.CrossRefGoogle Scholar
  12. 12.
    Kabouche, A., Kabouche, Z., Ôzturk, M., Kolal, U., & Topçu, G. (2007). Antioxidant abietane diterpenoids from Salvia barrelieri. Food Chemistry, 102, 1281–1287.CrossRefGoogle Scholar
  13. 13.
    Klancnik, A., Piskernik, S., Jeršek, B., & Smole, M. S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods, 81, 121–126.CrossRefGoogle Scholar
  14. 14.
    Kumar, B., Vijayakumar, M., Govindarajan, R., & Pushpangadan, P. (2007). Ethnopharmacological approaches to wound healing-exploring medicinal plants in India. Journal of Ethnopharmacology, 114(2), 103–113.CrossRefGoogle Scholar
  15. 15.
    Langfield, R. D., Scarano, F. J., Heitzman, M. E., Kondo, M., Hammond, G. B., & Neto, C. C. (2004). Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galiodes. Journal of Ethnopharmacology, 94(2–3), 279–281.CrossRefGoogle Scholar
  16. 16.
    Levy, S. B. (1994). Drug resistance the new apocalypse (special issue). Trends in Microbiology, 2, 341–425.CrossRefGoogle Scholar
  17. 17.
    Maltophilia, S., Betts, J. W., Murphy, C., Kelly, S. M., & Haswell, S. J. (2012). Synergistic antibacterial effects of theaflavin in combination with ampicillin against hospital isolates of Stenotrophomonas maltophilia. Journal of Microbiology, Biotechnology and Food Sciences, 2(3), 1068–1078.Google Scholar
  18. 18.
    Mathekaga, A. D. M., & Meyer, J. J. M. (1998). Antibacterial activity of South African Helichrysum species. South African Journal of Botany, 64, 293–295.Google Scholar
  19. 19.
    McDonald, S., Prenzler, P. D., Autolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73–84.CrossRefGoogle Scholar
  20. 20.
    Mensor, L. L., Menezes, F. S., Leitao, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitao, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127–130.CrossRefGoogle Scholar
  21. 21.
    Ncube, N. S., Afolayan, A. J., & Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin. Current Methods and Future Trends, 7(12), 1797–1806.Google Scholar
  22. 22.
    Njenga, E., Van Vuuren, S. F., & Viljoen, A. M. (2005). Antimicrobial activity of Eriocephalus species. South African Journal of Botany, 71, 81–87.Google Scholar
  23. 23.
    Nostro, A., Germarno, M. P., D’Angelo, V., Marino, A., & Canatelli, M. A. (2000). Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology, 30, 379–384.CrossRefGoogle Scholar
  24. 24.
    Norshazila, S., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. R., & Kamarul Rahim, K. (2010). Antioxidant levels and activities of selected seeds of Malaysian tropical fruits. Malaysian Journal Nutrition, 16, 149–159.Google Scholar
  25. 25.
    Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Sokovic, M., Ciric, A., & Glamoclija, J. (2010). Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorganic & Medicinal Chemistry, 18, 426–432.CrossRefGoogle Scholar
  26. 26.
    Pradhan, C., Mohanty, M., & Rout, A. (2013). Assessment of the antibacterial potential of breadfruit leaf. International Journal of Pharmacy, 3(2), 374–379.Google Scholar
  27. 27.
    Pradhan C, Mohanty M, & Rout A. (2013). Front Life Sci, 2155–3777 published online 5th March.Google Scholar
  28. 28.
    Parekh, J., Jadeja, D., & Chanda, S. (2005). Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish Journal of Biology, 29, 203–210.Google Scholar
  29. 29.
    Ragone D. (1997). Breadfruit-Artocarpus altilis (Parkinson) Fosberg: promoting the conservation and use of underutilized and neglected crops. Rome, Italy pp.77.Google Scholar
  30. 30.
    Sari, F., Turkmen, N., Polat, G., & Velioglu, Y. S. (2007). Total polyphenol, antioxidant and antibacterial activities of black mate tea. Food Science and Technology Research, 13(3), 265–269.CrossRefGoogle Scholar
  31. 31.
    Seifried, H. E., Anderson, D. E., Fisher, E. I., & Milner, J. A. (2007). A review of the interaction among dietary antioxidants and reactive oxygen species. Journal of Nutritional Biochemistry, 1, 1–8.Google Scholar
  32. 32.
    Sengul, M., Hilal, Y., Neva, G., Bulent, C., Zeynep, E., & Sezai, E. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22(1), 102–106.Google Scholar
  33. 33.
    Sujatha, R. K., & Rajan, S. (2014). Bactericidal effect of Aegle marmelos extracts on pathogenic bacteria. World Journal of Pharmacy and Pharmaceutical Sciences, 3(2), 2202–2213.Google Scholar
  34. 34.
    Tanaka, J. C. A., da Silva, C. C., de Oliveira, A. J. B., Nakamura, C. V., & Dias Filho, B. P. (2006). Antibacterial activity of indole alkaloids from Aspidosperma ramiflorum. Brazilian Journal of Medical Biology Research, 39(3), 387–391.CrossRefGoogle Scholar
  35. 35.
    Vinson, J., Hao, Y., Su, X., & Zubik, L. S. (1998). Phenol antioxidant quantity and quality in foods: vegetables. Journal of Agricultural and Food Chemistry, 46, 3630–3634.CrossRefGoogle Scholar
  36. 36.
    Wilkinson JJ. (2007). Methods for testing the antimicrobial activity of extracts. ModernPhytomedicine, 157–171.Google Scholar
  37. 37.
    Yen, G. C., Duh, P. D., & Su, H. J. (2004). Antioxidant properties of lotus seed and its effect on DNA damage in human lymphocytes. Food Chemistry, 89, 379–385.CrossRefGoogle Scholar
  38. 38.
    Zhang, Z., Li, D., Wang, L., Ozkan, N., Chen, X. D., Mao, Z., & Yang, H. (2007). Optimization of ethanol-water extraction of lignans from flaxseed. Separation and Purification Technology, 57(1), 17–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tara Kamal Jalal
    • 2
  • Idris Adewale Ahmed
    • 3
  • Maryam Mikail
    • 3
  • Lailuma Momand
    • 2
  • Samsul Draman
    • 1
    • 6
  • Muhammad Lokman Md Isa
    • 1
    • 5
  • Mohammad Syaiful Bahari Abdull Rasad
    • 1
    • 2
  • Muhammad Nor Omar
    • 4
  • Muhammad Ibrahim
    • 1
    • 3
  • Ridhwan Abdul Wahab
    • 1
    • 2
    Email author
  1. 1.Integrated Center for Research Animal, Care and Use (ICRACU)International Islamic University Malaysia (IIUM)KuantanMalaysia
  2. 2.Department of Biomedical Science, Kulliyyah of Allied Health SciencesInternational Islamic University Malaysia (IIUM)KuantanMalaysia
  3. 3.Department of Nutrition Sciences, Kulliyyah of Allied Health SciencesInternational Islamic University Malaysia (IIUM)KuantanMalaysia
  4. 4.Department of Biotechnology, Kulliyyah of ScienceInternational Islamic University Malaysia (IIUM)KuantanMalaysia
  5. 5.Department f Basic Medical Sciences, Kulliyyah f NursingInternational Islamic University Malaysia (IIUM)KuantanMalaysia
  6. 6.Department of Family Medicine, Kulliyyah of MedicineInternational Islamic University Malaysia (IIUM)KuantanMalaysia

Personalised recommendations