Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 6, pp 3093–3119 | Cite as

Biosensor Technology for Pesticides—A review

  • Neelam Verma
  • Atul Bhardwaj
Article

Abstract

Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century’s approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and biochips technology. Also, the major technological advancements of nanotechnology in the field of biosensor technology are discussed. Various biosensors mentioned in manuscript are found to exhibit storage stability of biocomponent ranging from 30–60 days, detection limit of 10−6 − 10−16 M, response time of 1–20 min and applications of developed biosensors in environmental samples (water, food, vegetables, milk, and juice samples, etc.) are also discussed. Researchers all over the globe are working towards the development of different biosensing techniques based on contrast approaches for the detection of pesticides in various environmental samples.

Keywords

Pesticides Biosensors Acetylcholinesterase (AChE) Oragnophosphate (OP) Aptamers Transducers 

References

  1. 1.
    Skladal, P., Nunes, G. S., Yamanaka, H., & Ribero, M. L. (1997). Electroanalytical, 9, 1083–1087.Google Scholar
  2. 2.
    Singh, P. (2011). PhD Thesis. Guru Nanak Dev University Amritsar. India.Google Scholar
  3. 3.
    Amaral, A. F. S. (2014). Front Public Health, 2, 6.Google Scholar
  4. 4.
    Linan, C. (1994). Vademecum de products fito sanitarios (10th ed.). Madrid: Spain.Google Scholar
  5. 5.
    Hua, F., Yunlong, Y., Xiaoqiang, C., Xiuguo, W., Xiaoe, Y., & Jingquan, Y. (2009). J. Environ. Sci., 21, 380–386.Google Scholar
  6. 6.
    Odukkathil, G., & Vasudevan, N. (2013). Reviews in Environmental Science and Biotechnology, 12, 421–444.Google Scholar
  7. 7.
    Meng, X. W., Wei, J. F., Ren, X. L., Ren, J., & Tang, F. (2013). Biosensors and Bioelectronics, 47, 402–407.Google Scholar
  8. 8.
    McEwen, F. L., & Stephenson, G. R. (1979). The use and significance of pesticides in the environment. New York: John Wiley and Sons.Google Scholar
  9. 9.
    Viswanathan, P. N. (1985). Membrane Biology, 11, 88–97.Google Scholar
  10. 10.
    DeFlora, S. D., Vigano, L., Agoslini, F., Camorirano, A., Bagnasco, M., Bennicelli, C., Melodia, F., & Arillo, A. (1993). Mutation Research, 319, 167–177.Google Scholar
  11. 11.
    Kuroda, K., Yamagachi, Y., & Endo, G. (1992). Archives of Environmental Contamination and Toxicology, 23, 13–18.Google Scholar
  12. 12.
    Rehana, Z., Malik, A., & Ahmad, M. (1992). Mutation Research, 343, 137–144.Google Scholar
  13. 13.
    Donarski, W. J., Dumas, D. P., Heitmeyer, D. H., Lewis, V. E., & Raushel, F. M. (1989). Biochemistry, 28, 4650–4655.Google Scholar
  14. 14.
    Chapalamadugu, S., & Chaudhry, G. R. (1992). Critical Reviews in Biotechnology, 12, 357–389.Google Scholar
  15. 15.
    Suwalsky, M., Rodriguez, C., Villena, F., & Sotomayor, C. P. (2005). Food and Chemical Toxicology, 43, 647–54.Google Scholar
  16. 16.
    Farag, A. T., Radwan, A. H., Sorour, F., Okazy, A. E. I., & Agamy, E. I. S. E. I. (2010). Reproductive Toxicology, 29, 80–85.Google Scholar
  17. 17.
    Rawlings, N. C., Cook, S. J., & Waldbillig, D. (1998). Journal of Toxicology and Environmental Health Part A Current Issues, 54, 21–36.Google Scholar
  18. 18.
    Gold, L. S., Slone, T. H., & Manley, N. B. (1991). Environmental Health Perspectives, 93, 33–46.Google Scholar
  19. 19.
    Fendick, E. A., Mather-Mihaich, E., & Houck, K. A. (1990). Reviews of Environmental Contamination and Toxicology, 11, 161–142.Google Scholar
  20. 20.
    Jaffrezic-Renault, N. (2001). Sensors, 1, 60–74.Google Scholar
  21. 21.
    Velasco-Garcia, M. N., & Mottram, T. (2003). Biosystems Engineering, 84, 1–12.Google Scholar
  22. 22.
    Jiang, X., Li, D., Xu, X., Ying, Y., Li, Y., Ye, Z., & Wang, J. (2008). Biosensors and Bioelectronics, 23, 1577–1587.Google Scholar
  23. 23.
    Turner, A. P. F., Karube, I., & Wilson, S. W. (1986). Biosensors. Fundamentals and applications. Oxford: Oxford Science.Google Scholar
  24. 24.
    Powner, E. T., & Yalcinkaya, F. (1997). Sensor Review, 17, 107–116.Google Scholar
  25. 25.
    Verma, N., & Singh, M. (2003). Biosensors & Bioelectronics, 18, 1219–1224.Google Scholar
  26. 26.
    Singh, M., Garg, N., Verma, A. K., & Redhu, N. (2008). Sensors and Actuators B: Chemical, 134, 345–351.Google Scholar
  27. 27.
    Liu, Y., Matharu, Z., Howland, M. C., Revzin, A., & Simonian, A. L. (2012). Analytical and Bioanalytical Chemistry, 404, 1181–1196.Google Scholar
  28. 28.
    Verma, N., & Dhillon, S. S. (2003). Journal of Environmental Studies, 60, 29–43.Google Scholar
  29. 29.
    Mionetto, N., Marty, J. L., & Karube, I. (1994). Biosensors and Bioelectronics, 9, 463–470.Google Scholar
  30. 30.
    Evtugyn, G. A., Budnikov, H. C., & Nikolskaya, E. B. (1996). Analytical, 121, 1911–1915.Google Scholar
  31. 31.
    Deo, R. P., Wang, J., Block, I., Mulchandani, A., Joshi, K. A., Trojanowicz, M., Scholz, F., Chen, W., & Lin, Y. (2005). Biosensors and Bioelectronics, 16, 185–189.Google Scholar
  32. 32.
    Laschi, S., Ogonczyk, D., Palchetti, I., & Mascini, M. (2007). Enzyme and Microbial Technology, 40, 485–489.Google Scholar
  33. 33.
    Simonian, A. L., Rainina, E. I., & Wild, J. R. (1997). Analytical Letters, 30, 2453–2468.Google Scholar
  34. 34.
    Ibrahim, H. K. R., Helmi, S., Lewis, J., & Crane, M. (1998). Bulletin of Environmental Contamination and Toxicology, 60, 448–455.Google Scholar
  35. 35.
    Rainina, E. I., Efremenko, E. N., Varfolomeyev, S. D., Simonian, A. L., & Wild, J. R. (1996). Biosensors and Bioelectronics, 11, 991–1000.Google Scholar
  36. 36.
    Simonian, A. L., Grimsley, J. K., Flounders, A. W., Schoeniger, J. S., Cheng, T. C., DeFrank, J. J., & Wild, J. R. (2001). Analytica Chimica Acta, 442, 15–23.Google Scholar
  37. 37.
    Abhilash, P. C., & Singh, N. (2009). Journal of Hazardous Materials, 165, 1–12.Google Scholar
  38. 38.
    Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Interdisciplinary Toxicology, 2, 1–12.Google Scholar
  39. 39.
    Shetty, P. K., Murugan, M., & Sreeja, K. G. (2008). Current Science, 95, 457–464.Google Scholar
  40. 40.
    Koh, D., & Jeyaratnam, J. (1996). The Science of the Total Environment, 1, 78–85.Google Scholar
  41. 41.
    Gavrilescu, M. (2005). Engineering in Life Sciences, 5, 497–526.Google Scholar
  42. 42.
    Younes, M., & Galal-gorchev, H. (2000). Food and Chemical Toxicology, 38, 87–90.Google Scholar
  43. 43.
    Meriel, W. (2005). Pesticide: sowing poison, growing hunger, reaping sorrow (2nd ed.). Penang: Pesticide Action Network Asia and Pacific Policy Research and Analysis.Google Scholar
  44. 44.
    Lee, J. S., Tanabe, S., Takemoto, N., & Kubodera, T. (1997). Marine Pollution Bulletin, 34, 250–258.Google Scholar
  45. 45.
    Sivamurthy, M. A., Sivasankaran Reddy, S., Govindaradjan, S., & Ramesh, R. (2007). Journal of Environmental Science & Engineering, 49, 7–12.Google Scholar
  46. 46.
    Gurug, K. S., & Tanabe, S. (2001). Contamination by persistent organochlorines and butylin compounds in the west coast of Sri Lanka. Pollution Bulletin, 42, 179–186.Google Scholar
  47. 47.
    Stewart, D. K., Chrisholm, D., & Ragab, M. T. (1971). Nature, 229, 47–48.Google Scholar
  48. 48.
    Tanabe, S., Iwata, H., & Tatsukawa, R. (1994). The Science of the Total Environment, 154, 163–177.Google Scholar
  49. 49.
    Lorenz, E. S. (2006). Pesticide safety fact sheet. USA: Pennsylvania State University.Google Scholar
  50. 50.
    Poon, B. H. T., Leung, C. K. M., Wong, C. K. C., & Wong, M. H. (2005). Archives of Environmental Contamination and Toxicology, 49, 274–282.Google Scholar
  51. 51.
    Mundoz-de-Toro, M., Beldomenico, H. R., Garcia, S. R., Stoker, C. D., Jesuds, J. J., Beldomednico, P. M., Ramos, J. G., & Luque, E. H. (2006). Environmental Research, 102, 107–112.Google Scholar
  52. 52.
    Singh, B. K., Walker, A., & Wright, D. J. (2006). Soil Biology and Biochemistry, 38, 2682–2693.Google Scholar
  53. 53.
    Dragun, J., Kuffner, A. C., & Schneiter, R. W. (1984). Chemical Engineer, 91, 65–70.Google Scholar
  54. 54.
    Gallo, M. A., & Lawryk, N. J. (1991). In Organic phosphorus pesticides, vol 2. In E. R. Hayes & E. R. Laws (Eds.), Handbook of pesticide toxicology classes of pesticides (pp. 917–1123). San Diego: Academic.Google Scholar
  55. 55.
    Karalliedde, L., & Senanayake, N. (1999). Journal of the International Federation of Clinical Chemistry, 11, 4–9.Google Scholar
  56. 56.
    Sogorb, M. A., Vilanova, E., & Carrera, V. (2004). Toxicology Letters, 151, 219–233.Google Scholar
  57. 57.
    Gold, L. S., Slone, T. H., Manley, N. B., & Bernstein, L. (1991). Environmental Health Perspectives, 93, 233–46.Google Scholar
  58. 58.
    Ayotte, P., Giroux, S., & Dewailly, E. (2001). Epidemiology, 12, 366–67.Google Scholar
  59. 59.
    Dalvie, M. A., Myers, J. E., & Lou Thompson, M. (2004). Environmental Research, 96, 9–19.Google Scholar
  60. 60.
    Cornacoff, J. B., Lauer, L. D., House, R. V., Tucker, A. N., Thurmond, L. M., Vos, J. G., Working, P. K., & Dean, J. H. (1988). Fundamental and Applied Toxicology, 11, 293–99.Google Scholar
  61. 61.
    Rugman, F. P., & Cosstick, R. (1990). Journal of Clinical Pathology, 43, 98–101.Google Scholar
  62. 62.
    Khanjani, N., & Sim, M. R. (2006). The Science of the Total Environment, 368, 557–564.Google Scholar
  63. 63.
    Thrasher, J. D., Madison, R., & Broughton, A. (1993). Archives of Environmental, 48, 89–93.Google Scholar
  64. 64.
    Chanda, S. M., Harp, P., Liu, J., & Pope, C. N. (1995). Journal of Toxicology and Environmental Health, 44, 189–202.Google Scholar
  65. 65.
    Jamil, K., Shaik, A. P., Mahboob, M., & Krishhna, D. (2004). Drug and Chemical Toxicology, 27, 133–144.Google Scholar
  66. 66.
    Saunders, M., Magnanti, L. B., Carreira, S. C., Yang, A., Alamo-Hernández, U., Horacio Riojas-Rodriguez, H., Calamandrei, G., Koppe, J. G., Krayer von Krauss, M., Keune, H., & Bartonova, A. (2012). Environmental Health, 11, 5.Google Scholar
  67. 67.
    Kumar, M. V. S., & Desiraju, T. (1992). Toxicology, 75, 13–20.Google Scholar
  68. 68.
    Pope, C. N. (1999). Journal of Toxicology and Environmental Health B, 2, 161–181.Google Scholar
  69. 69.
    Thomas, D. C., Petitti, D. B., Goldhaber, M., Swan, S. H., Rappaport, E. B., & Hertz-Picciotto, I. (1992). Epidemiology, 3, 32–9.Google Scholar
  70. 70.
    Datta, C., Jayati, G., & Dipti, S. (1994). The Indian Journal of Medical Research, 100, 87–9.Google Scholar
  71. 71.
    Yarsan, E., Tanyuksel, M., Celik, S., Aydin, A., Yarsan, E., Tanyuksel, M., Celik, S., & Aydin, A. (1999). Bulletin of Environmental Contamination and Toxicology, 63, 575–581.Google Scholar
  72. 72.
    Blasiak, J., Jaloszynski, P., Trzeciak, A., & Szyfter, K. (1999). Mutation Research, 445, 275–283.Google Scholar
  73. 73.
    Elliott, M., & Janes, N. F. (1978). Chemical Society Reviews, 7, 473–505.Google Scholar
  74. 74.
    Reigart, J. R., & Roberts, J. R. (1999). Recognition and management of pesticide poisonings (5th ed.). Washington DC: EPA.Google Scholar
  75. 75.
    Fukuto, R. T. (1990). Environmental Health Perspectives, 87, 245–254.Google Scholar
  76. 76.
    Mwila, K., Burton, M. H. V., Dyk, J. S., & Pletschke, B. I. (2013). Environmental Monitoring and Assessment, 185, 2315–2327.Google Scholar
  77. 77.
    Colborn, T. V., Saal, F. S., & Soto, A. M. (1993). Environmental Health Perspectives, 101, 378–384.Google Scholar
  78. 78.
    Gray, L. E., Ostby, J. S., & Kelce, W. R. (1994). Toxicology and Applied Pharmacology, 129, 46–52.Google Scholar
  79. 79.
    Sanfeliu, C., Sebastià, J., Cristòfol, R., & Rodríguez-farré, E. (2003). Neurotox Research, 5, 283–306.Google Scholar
  80. 80.
    Durzan, D. J., Santerre, A., Havel, A., et al. (2006). In Cell biology and instrumentation UV radiations Nitric oxide and cell death in plants, vol. 371. In Y. Blume (Ed.), Effect of chlorosulfuran on early embryo development in Norway Spruce cell suspensions (pp. 263–275). USA: IOS press,Carlifornia.Google Scholar
  81. 81.
    Bond, G. G., & Rossbacher, R. (1993). British Journal of Industrial Medicine, 50, 340–348.Google Scholar
  82. 82.
    Bradberry, S. M., Proudfoot, A. T., & Vale, J. A. (2004). Toxicology Review, 23, 65–73.Google Scholar
  83. 83.
    Agnihotri, N. P. (1999). Pesticide safety evaluation and monitoring, published all India co-ordinated research project on pesticide residues division of agricultural chemicals. New Delhi: Indian Agricultural Research Institute.Google Scholar
  84. 84.
    Manahan, S. E. (1992). Environmental chemistry (5th ed.). Chelsea: Lewis Publishers.Google Scholar
  85. 85.
    Goldberg, M. E., Johnson, H. E., Knaak, J. B., & Smyth, H. F. (1963). The Journal of Pharmacology and Experimental Therapeutics, 141, 244–252.Google Scholar
  86. 86.
    Vandekar, M., Plestina, R., & Wilhelm, K. (1971). Bulletin of the World Health Organization, 44, 241–249.Google Scholar
  87. 87.
    Zweig, G. (1994). In S. Suzane Nielson (Ed.), Introduction to Chemical Analysis of Foods, vol 2: Recent developments in the analysis of pesticides (pp. 339–368) London.Google Scholar
  88. 88.
    Gilliom, R. J., Barbash, J. E., Koplin, D. W., & Larson, S. J. (1999). Environmental Science & Technology, 33, 164–169.Google Scholar
  89. 89.
    Rogers, K. R., & Gerlach, C. L. (1996). Environmental Science & Technology, 30, 486–491.Google Scholar
  90. 90.
    Kramer, P. M. (1996). Journal of AOAC International, 79, 1245–1254.Google Scholar
  91. 91.
    Evtugyn, G. A., Budnikov, H. C., & Nikolskaya, E. B. (1998). Talanta, 46, 465–484.Google Scholar
  92. 92.
    Sara, R. M., Maria, J. L. A., Maria-Pilar, M., & Damia, B. (2005). Talanta, 65, 291–297.Google Scholar
  93. 93.
    Collings, A. F., & Caruso, F. (1997). Reports on Progress in Physics, 60, 1397.Google Scholar
  94. 94.
    Scheller, F. W., Wollenberger, U., Warsinke, A., & Lisdat, F. (2001). Current Opinion in Chemical Biology, 12, 35–40.Google Scholar
  95. 95.
    Guilbault, G. G., Pravda, M., Kreuzer, M. O., & Sullivan, C. K. (2004). Analytical Letters, 37, 1481–1496.Google Scholar
  96. 96.
    Mulchandani, A., Kaneva, I., & Wilfred, C. (1998). Analytical Chemistry, 70, 5042–5046.Google Scholar
  97. 97.
    Marco, M. P., Gee, S., & Hammock, B. D. (1995). Trends in Analytical Chemistry, 7, 341–350.Google Scholar
  98. 98.
    Guo, Y., Gong, Z., Cao, Y., Wang, X., & Sun, X. (2013). Sensing Transition, 156, 374–378.Google Scholar
  99. 99.
    Trojanowicz, M. (2002). Electroanalysis, 14, 19–20.Google Scholar
  100. 100.
    Hassal, K. A. (1990). The biochemistry and use of pesticides: Structure, metabolism, mode of action and uses in crop protection (3rd ed.). New York: VCH Publishers.Google Scholar
  101. 101.
    Palchetti, I., Cagnini, A. D., Carlo, M., Coppi, C., Mascini, M., & Turner, A. P. F. (1997). Analytica Chimica Acta, 337, 315–321.Google Scholar
  102. 102.
    Diehl-Faxon, J., Ghindilis, A. L., Atanasov, P., & Wilkins, E. (1996). Sensors and Actuators B, 35, 448–457.Google Scholar
  103. 103.
    Palleschi, G., Bernabei, M., Cremisini, C., & Mascini, M. (1992). Sensors and Actuators B, 7, 513–517.Google Scholar
  104. 104.
    Trojanowicz, M., & Hitchman, M. L. (1996). Trends in Analytical Chemistry, 15, 38–45.Google Scholar
  105. 105.
    Andreescu, S., & Marty, J. L. (2006). Biomolecular Engineering, 23, 1–15.Google Scholar
  106. 106.
    Schulze, H., Vorlova, S., Villatte, F., Bachmann, T. T., & Schmidt, R. D. (2003). Biosensors and Bioelectronics, 18, 201–209.Google Scholar
  107. 107.
    Bachmann, T. T., Leca, B., Villatte, F., Marty, J. L., Fournier, D., & Schmid, R. D. (2000). Biosensors and Bioelectronics, 15, 193–201.Google Scholar
  108. 108.
    Luque de Castro, M. D., & Herrera, M. C. (2003). Biosensors and Bioelectronics, 18, 279–294.Google Scholar
  109. 109.
    Sotiropoulou, S., Fournier, D., & Chaniotakis, N. A. (2005). Biosensors and Bioelectronics, 20, 2347–2352.Google Scholar
  110. 110.
    Lin, Y. H., Lu, F., & Wang, J. (2004). Electroanalytical, 6, 145–149.Google Scholar
  111. 111.
    Snejdarkova, M., Svobodova, L., Evtugyn, G., Budnikov, H., Karyakin, A., Nikolelis, D. P., & Hianik, T. (2004). Analytica Chimica Acta, 514, 179–188.Google Scholar
  112. 112.
    Suwansaard, S., Kanatarana, P., Asawatreratanakul, P., Limsakul, C., Wongkittisuksa, B., & Thavarungkul, P. (2005). Biosensors and Bioelectronics, 21, 445–454.Google Scholar
  113. 113.
    Singh, A. K., Flounders, A. W., Volponi, J. V., Ashley, C. S., Wally, K., & Shoeniger, J. S. (1999). Biosensors and Bioelectronics, 14, 703–713.Google Scholar
  114. 114.
    Verma, N, & Eneyew, T.M. (2001). Biochemistry Environment and Agriculture. In A.P.S. Maan, S.K. Munshi, A.K. Gupta (Ed.), Studies on the development of disposable biosensor for monitoring malathion pesticide residues (pp. 265–269) Kalyani, New Delhi, India.Google Scholar
  115. 115.
    Verma, N., Saini, J., & Pahwa, S. (2013). Emerging paradigms in Nanotechnology, Vol 1. In R. C. Sobti, A. Kaushik, B. Singh, & S. K. Tripathi (Eds.), Development of Electrochemical biosensor for the detection of Chlorpyrifos Using Silver Nanoparticles (pp. 479–483). New Delhi: Pearson.Google Scholar
  116. 116.
    Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. (2012). Biotechnology Advances, 30, 489–511.Google Scholar
  117. 117.
    Yagi, K. (2007). Applied Microbiology and Biotechnology, 73, 1251–1258.Google Scholar
  118. 118.
    Mulchandani, P., Chen, W., Mulchandani, A., Wang, J., & Chen, L. (2001). Biosensors and Bioelectronics, 16, 433–437.Google Scholar
  119. 119.
    Wang, J., Kraus, R., Block, K., Musameh, M., Mulchandani, A., & Schöning, M. J. (2003). Biosensors & Bioelectronics, 18, 255–260.Google Scholar
  120. 120.
    Mulchandani, A., Shengtian, P., & Chen, W. (1999). Biotechnology Progress, 15, 130–134.Google Scholar
  121. 121.
    Viveros, L., Paliwal, S., McCrae, D., Wild, J., & Simonian, A. A. (2006). Sensors and Actuators B, 115, 150–157.Google Scholar
  122. 122.
    Choi, B. G., Park, H., Park, T. J., Yang, M. H., Kim, J. S., Jang, S. Y., Heo, N. S., Lee, S. Y., Kong, J., & Hong, W. H. (2010). ACS Nano, 4, 2910–2918.Google Scholar
  123. 123.
    Dumas, D. P., Durst, H. D., Landis, W. G., Raushel, F. M., & Wild, J. R. (1990). Archives of Biochemistry and Biophysics, 227, 155–159.Google Scholar
  124. 124.
    Tang, X., Zhang, T., Liang, B., Han, D., Zeng, L., Zheng, C., Li, T., Wei, M., & Liu, A. (2014). Biosensors and Bioelectronics, 60, 137–142.Google Scholar
  125. 125.
    Kaur, J. K., Singh, V., & Schmid, A. H. (2004). Biosensors and Bioelectronics, 20, 284–293.Google Scholar
  126. 126.
    Zhu, J. N., Jin, M. J., Gui, W. J., Guo, Y. R., Jin, R. Y., & Wang, C. M. (2008). Food Chemistry, 107, 1737–1742.Google Scholar
  127. 127.
    Liu, G., Guo, W., & Song, D. (2014). Biosensors and Bioelectronics, 52, 360–366.Google Scholar
  128. 128.
    Gabaldon, J. A., Cascales, J. M., Morais, S., Maquieira, A., & Puchades, R. (2003). Food Additives and Contaminants 20707–715.Google Scholar
  129. 129.
    Wang, J., Chen, D., Xu, Y., & Liu, W. (2014). Sensors and Actuators B, 190, 378–383.Google Scholar
  130. 130.
    Mulchandani, P., Chen, W., & Mulchandani, A. (2001). Environmental Science & Technology, 35, 2562–2565.Google Scholar
  131. 131.
    Andreou, G. V., & Clonis, Y. D. (2002). Biosensors and Bioelectronics, 17, 61–69.Google Scholar
  132. 132.
    Lee, S. H., Kim, A. Y., Cho, Y. A., & Lee, Y. T. (2002). Chemosphere, 46, 571–576.Google Scholar
  133. 133.
    Pogacnik, L., & Franko, M. (2003). Biosensors & Bioelectronics, 18, 1–9.Google Scholar
  134. 134.
    Ciucu, A. A., Negulescu, C., & Baldwin, R. P. (2003). Biosensors & Bioelectronics, 18, 303–310.Google Scholar
  135. 135.
    Lin, Y., Lu, F., & Wang, J. (2004). Electroanalytical, 16, 1–2.Google Scholar
  136. 136.
    Deo, R. P., Wang, J., Block, I., Mulchandani, A., Joshic, K. A., Trojanowicz, M., Scholz, F., Chen, W., & Lin, Y. (2005). Analytica Chimica Acta, 530, 185–189.Google Scholar
  137. 137.
    Lin, T. J., Huang, K. T., & Liu, C. Y. (2006). Biosensors and Bioelectronics, 22, 513–518.Google Scholar
  138. 138.
    Vamvakaki, V., & Chaniotakis, N. A. (2007). Biosensors and Bioelectronics, 22, 2848–2853.Google Scholar
  139. 139.
    Zourob, M., Ong, K. G., Zeng, K., Mouffoukd, F., & Grimesc, C. A. (2007). Analyst, 132, 38–343.Google Scholar
  140. 140.
    Valeraa, E., Azcon, R., Sanchez, F. J., Marco, M. P., & Rodrıgueza, A. (2008). Sensors and Actuators B, 134, 95–103.Google Scholar
  141. 141.
    Yang, G., White, I. M., & Fan, X. (2008). Sensors and Actuators B, 133, 105–112.Google Scholar
  142. 142.
    Viswanathan, S., Radecka, H., & Radecki, J. (2009). Biosensors and Bioelectronics, 24, 2772–2777.Google Scholar
  143. 143.
    Gao, Y., Kyratzis, L., Taylor, R., Huynh, C., & Hickey, M. (2009). Analytical Letters, 42, 2711–2727.Google Scholar
  144. 144.
    Sun, X., & Wang, X. (2010). Biosensors & Bioelectronics, 25, 2611–2614.Google Scholar
  145. 145.
    Du, D., Chen, W., Zhang, W., Liu, D., Li, H., & Lin, Y. (2010). Biosensors and Bioelectronics, 25, 1370–1375.Google Scholar
  146. 146.
    Lee, J. H., Park, J. Y., Min, K., Cha, H. J., Choi, S. S., & Yoo, Y. J. (2010). Biosensors and Bioelectronics, 25, 1566–1570.Google Scholar
  147. 147.
    Ionescua, R. E., Gondranb, C., Bouffierb, L., Jaffrezic-Renaulta, N., Marteleta, C., & Cosnier, S. (2010). Electrochimica Acta, 55, 6228–6232.Google Scholar
  148. 148.
    Du, D., Ye, X., Cai, J., Liu, J., & Zhang, A. (2010). Biosensors and Bioelectronics, 25, 2503–2508.Google Scholar
  149. 149.
    Chen, S., Huang, J., Du, D., Li, J., Tu, H., Liu, D., & Zhang, A. (2011). Biosensors and Bioelectronics, 26, 4320–432.Google Scholar
  150. 150.
    Zheng, Z., Zhou, Y., Li, X., Liu, S., & Tang, Z. (2011). Biosensors and Bioelectronics, 26, 3081–3085.Google Scholar
  151. 151.
    Wu, S., Zhang, L., Qi, L., Taoa, S., Lan, X., Liu, Z., & Menga, C. (2011). Biosensors and Bioelectronics, 26, 2864–2869.Google Scholar
  152. 152.
    Campanellaa, L., Ereminb, S., Leloa, D., Martinia, E., & Tomassettia, M. (2011). Sensors and Actuators B, 156, 50–62.Google Scholar
  153. 153.
    Sun, X., Du, S., Wang, X., Zhao, W., & LiA, Q. (2011). Sensors, 11, 9520–9531.Google Scholar
  154. 154.
    Cesarino, I., Moraes, F. C., Lanza, M. R. V., & Machado, S. A. S. (2012). Food Chemistry, 135, 873–879.Google Scholar
  155. 155.
    Raghu, P. K., Swamy, B. E., Reddy, T. M., Chandrashekar, B. N., & Reddaiah, K. (2012). Bioelectrochemistry, 83, 19–24.Google Scholar
  156. 156.
    Du, S., Wang, X., Sun, X., & Li, Q. (2012). Analytical Letters, 45, 1230–1241.Google Scholar
  157. 157.
    Mishra, R. K., Dominguez, R. B., Bhand, S., Munoz, R., & Marty, J. L. (2012). Biosensors and Bioelectronics, 32, 56–61.Google Scholar
  158. 158.
    Zhang, L., Zhang, A., Du, D., & Lin, Y. (2012). Nanoscale, 4, 4674–4679.Google Scholar
  159. 159.
    Gong, J., Guan, Z., & Song, D. (2013). Biosensors and Bioelectronics, 39, 320–323.Google Scholar
  160. 160.
    Liu, G., Song, D., & Chen, F. J. (2013). Talanta, 104, 103–108.Google Scholar
  161. 161.
    Yang, L., Wang, G., Liu, Y., & Wan, M. (2013). Talanta, 113, 135–141.Google Scholar
  162. 162.
    Arduini, F., Guidonea, S., Amineb, A., Palleschia, G., & Mosconea, D. (2013). Sensors and Actuators B, 179, 201–208.Google Scholar
  163. 163.
    Wei, M., Zeng, G., & Lu, Q. (2014). Mikrochimica Acta, 181, 121–127.Google Scholar
  164. 164.
    Jeyapragasam, T., & Saraswathi, R. (2014). Sensors and Actuators B, 191, 681–687.Google Scholar
  165. 165.
    Marco, M. P., & Barceloè, D. (1996). Measurement Science and Technology, 7, 1547.Google Scholar
  166. 166.
    Bange, A., Halsall, H. B., & Heineman, W. R. (2005). Biosensors & Bioelectronics, 20, 2488–2503.Google Scholar
  167. 167.
    Abdulhalim, I., Zourob, M., & Lakhtakia, A. (2008). Electromagnetics, 28, 214–242.Google Scholar
  168. 168.
    Periasamy, A. P., Umasankar, Y., & Chen, S. M. (2009). Sensors, 9, 4034–4055.Google Scholar
  169. 169.
    Erbahar, D. D., Gurol, I., Gumus, G., Musluoglu, E., Ozturk, Z. Z., Ahsen, V., & Harbeck, M. (2012). Sensors and Actuators B 173.Google Scholar
  170. 170.
    Dzantiev, B. B., Zherdev, A. V., Yulaev, M. F., Sitdikov, R. A., Dmitrieva, N. M., & Moreva, I. Y. (1996). Biosensors and Bioelectronics, 11, 179–185.Google Scholar
  171. 171.
    Yulaev, M. F., Sitdikov, R. A., Dmitrieva, N. M., Yazynina, E. V., Zherdev, A. V., & Dzantiev, B. B. (2001). Sensors and Actuators B, 75, 129–135.Google Scholar
  172. 172.
    Mallat, E., Barcelo, D., Barzen, C., Gauglitz, G., & Abuknesha, R. (2001). Trends in Analytical Chemistry, 20, 124–132.Google Scholar
  173. 173.
    Pulido-Tofino, P., Barrero-Moreno, J. M., & Perez-Conde, M. C. (2006). Analytica Chimica Acta, 562, 122–127.Google Scholar
  174. 174.
    Liu, X., Li, W. J., Li, L., Yang, Y., Mao, L. G., & Peng, Z. (2014). Sensors and Actuators, 191, 408–414.Google Scholar
  175. 175.
    Sassolas, A., Prieto-Simón, B., & Marty, J. L. (2012). American Journal of Analytical Chemistry, 3, 210–232.Google Scholar
  176. 176.
    Van Dorst, B., Mehta, J., Bekaert, K., Rouah-Martin, E., De Coen, W., Dubruel, P., Blust, R., & Robbens, J. (2007). Biosensors and Bioelectronics, 26, 1178–1194.Google Scholar
  177. 177.
    Lee, J. H., Yigit, M. V., Mazumdar, D., & Lu, Y. (2010). Advanced Drug Delivery Reviews, 62, 592–605.Google Scholar
  178. 178.
    Weerathunge, P., Ramanathan, R., Shukla, R., Sharma, T. K., & Bansal, V. (2014). Analytical Chemistry, 86, 11937–11941.Google Scholar
  179. 179.
    Zhang, C., Wang, L., Tu, Z., Sun, X., He, Q., Lei, Z., Xu, C., Liu, Y., Zhang, X., Yang, J., Liu, X., & Xu, Y. (2014). Biosensors and Bioelectronics, 55, 216–219.Google Scholar
  180. 180.
    Barahona, F., Bardliving, C. L., Phifer, A., Bruno, J. G., & Batt, C. A. (2013). Industrial Biotechnology, 9, 42–50.Google Scholar
  181. 181.
    Shi, H., Zhao, G., Liu, M., Fan, L., & Cao, T. (2013). Journal of Hazardous Materials, 260, 754–761.Google Scholar
  182. 182.
    Hillberg, A. L., Brain, K. R., & Allender, C. J. (2005). Advanced Drug Delivery Reviews, 57, 1875–1889.Google Scholar
  183. 183.
    Pichon, V., & Chapuis-Hugon, F. (2008). Analytica Chimica Acta, 622, 48–61.Google Scholar
  184. 184.
    Feng, L., Liu, Y., Zhou, X., & Hu, J. (2005). Journal of Colloid and Interface Science, 284, 378.Google Scholar
  185. 185.
    Xuea, X., Wei, Q., Wub, D., Li, H., Zhang, Y., Fenga, Y., & Du, B. (2014). Electrochimica Acta, 116, 366–371.Google Scholar
  186. 186.
    Anirudhan, T. S., & Alexander, S. (2015). Biosensors and Bioelectronics, 64, 586–593.Google Scholar
  187. 187.
    Toro, M. J. U., Marestoni, L. D., & Sotomayor, M. D. P. T. (2015). Sensors and Actuators, 208, 299–306.Google Scholar
  188. 188.
    Jenkins, A. L., Yin, R., & Jensen, J. L. (2001). Analyst, 126, 798–802.Google Scholar
  189. 189.
    Liren, M. (1999). [J]. Modern scientific instruments 3:000.Google Scholar
  190. 190.
    Zhang, Z., Li, P., Hu, X., Zhang, Q., Ding, X., & Zhang, W. (2012). Sensors, 12, 9234–9252.Google Scholar
  191. 191.
    Vo-Dinh, T. (2004). Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics. In Proceedings of the First International Symposium on Micro and Nano Technology, Hawaii. pp 1–6.Google Scholar
  192. 192.
    Mishra, R. K., Deshpande, K., & Bhand, S. (2010). Sensors, 10, 11274–11286.Google Scholar
  193. 193.
    Li, Y., Ma, X., Zhao, M., Qi, P., & Zhong, J. (2014). PloS One, 14, e104689. doi: 10.1371/journal.pone.0104689.Google Scholar
  194. 194.
    Pan, B., Cui, D., Xu, P., Li, Q., Huang, T., He, R., & Gao, F. (2007). Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 295, 217–222.Google Scholar
  195. 195.
    Cui, D. (2007). Journal of Nanoscience and Nanotechnology, 7, 1298–1314.Google Scholar
  196. 196.
    You, X., He, R., Gao, F., Shao, J., Pan, B., & Cui, D. (2007). Nanotechnology, 18, 035701–1035701.Google Scholar
  197. 197.
    Kerman, K., Saito, M., Tamiya, E., Yamamura, S., & Takamura, Y. (2008). TrAC-Trends in Analytical Chemistry, 27, 585–592.Google Scholar
  198. 198.
    Liang, L. Z., Qi, J. S., Mu, W. J., & Chen, Z. G. (2008). Journal of Biochemistry and Biophysics Methods, 70, 1156–1162.Google Scholar
  199. 199.
    He, X., Yuan, R., Chai, Y., & Shi, Y. (2008). Journal of Biochemical and Biophysical Methods, 70, 823–829.Google Scholar
  200. 200.
    Simonian, A. L., Good, T. A., Wan, S. S., & Wild, J. R. (2005). Analytica Chimica Acta, 534, 69–77.Google Scholar
  201. 201.
    Du, D., Chen, S., Song, D., Li, H., & Chen, X. (2008). Biosensors and Bioelectronics, 24, 475–479.Google Scholar
  202. 202.
    Liu, G., & Lin, Y. (2006). Analytical Chemistry, 78, 835–843.Google Scholar
  203. 203.
    Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T. H., Katzer, D. S., Park, D., Piermarocchi, C., & Sham, L. J. (2003). Science, 301, 809–811.Google Scholar
  204. 204.
    Vinayaka, A. C., Basheer, S., & Thakur, M. S. (2009). Biosensors and Bioelectronics, 24, 1615–1620.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Biosensor Technology Laboratory, Department of BiotechnologyPunjabi UniversityPatialaIndia

Personalised recommendations