Applied Biochemistry and Biotechnology

, Volume 175, Issue 6, pp 3025–3037 | Cite as

Production of Cell-Penetrating Peptides in Escherichia coli Using an Intein-Mediated System

  • Vida Rodríguez
  • Jorge Lascani
  • Juan A. Asenjo
  • Barbara A. Andrews
Article

Abstract

Cell-penetrating peptides are molecules with the ability to cross membranes and enter cells. Attention has been put on these peptides as a tool for drug delivery research, as they are able to serve as delivery vectors for large molecules. Intracellular delivery of bioactive peptides is a very promising research area for clinical applications, since peptides are able to simulate protein regions and thus modulate key intracellular protein-protein interactions. Therefore, evaluation of different strategies for production of these peptides is necessary. In this work, an intein-mediated system was used to evaluate Escherichia coli recombinant production of p53pAnt and PNC27 anticancer cell-penetrating peptides. It was demonstrated that the pTXB1 and the pTYB11 vector systems are suitable for production of this kind of peptides. The production process involves a low-temperature induction process and an efficient on-column intein-mediated cleavage, which allowed an effective peptide recovery using a single chromatographic step.

Keywords

Cell-penetrating peptides Intein cleavage Recombinant peptide production E. coli 

Abbreviations

CPP

Cell-penetrating peptide

Ni-NTA

Nickel-nitrilotriacetic acid

CBD

Chitin-binding domain

MALDI-TOF

Matrix-assisted laser desorption ionization time-of-flight

References

  1. 1.
    Madani, F., Lindberg, S., Langel, U., Futaki, S., & Gräslund, A. (2011). Mechanisms of cellular uptake of cell-penetrating peptides. Journal of Biophysics, 2011, 414729.CrossRefGoogle Scholar
  2. 2.
    Lundberg, P., & Langel, U. (2003). A brief introduction to cell-penetrating peptides. Journal of Molecular Recognition, 16, 227–233.CrossRefGoogle Scholar
  3. 3.
    Noguchi, H., & Matsumoto, S. (2006). Protein transduction technology: a novel therapeutic perspective. Acta Medica Okayama, 60, 1–11.Google Scholar
  4. 4.
    Wadia, J. S., & Dowdy, S. F. (2002). Protein transduction technology. Current Opinion in Biotechnology, 13, 52–56.CrossRefGoogle Scholar
  5. 5.
    Kashiwagi, H., McDunn, J. E., Goedegebuure, P. S., Gaffney, M. C., Chang, K., Trinkaus, K., Piwnica-Worms, D., Hotchkiss, R. S., & Hawkins, W. G. (2007). TAT-Bim induces extensive apoptosis in cancer cells. Annals of Surgical Oncology, 14, 1763–1771.CrossRefGoogle Scholar
  6. 6.
    Michod, D., Yang, J. Y., Chen, J., Bonny, C., & Widmann, C. (2004). A RasGAP-derived cell permeable peptide potently enhances genotoxin-induced cytotoxicity in tumor cells. Oncogene, 23, 8971–8978.CrossRefGoogle Scholar
  7. 7.
    Jalota-Badhwar, A., Kaul-Ghanekar, R., Mogare, D., Boppana, R., Paknikar, K. M., & Chattopadhyay, S. (2007). SMAR1-derived P44 peptide retains its tumor suppressor function through modulation of p53. Journal of Biological Chemistry, 282, 9902–9913.CrossRefGoogle Scholar
  8. 8.
    Hosotani, R., Miyamoto, Y., Fujimoto, K., Doi, R., Otaka, A., Fujii, N., & Imamura, M. (2002). Trojan p16 peptide suppresses pancreatic cancer growth and prolongs survival in mice. Clinical Cancer Research, 8, 1271–1276.Google Scholar
  9. 9.
    Minko, T., Dharap, S. S., & Fabbricatore, A. T. (2003). Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detection and Prevention, 27, 193–202.CrossRefGoogle Scholar
  10. 10.
    Yang, L., Mashima, T., Sato, S., Mochizuki, M., Sakamoto, H., Yamori, T., Oh-Hara, T., & Tsuruo, T. (2003). Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Research, 63, 831–837.Google Scholar
  11. 11.
    Derossi, D., Joliot, A. H., Chassaing, G., & Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 269, 10444–10450.Google Scholar
  12. 12.
    Selivanova, G., Iotsova, V., Okan, I., Fritsche, M., Strom, M., Groner, B., Grafstrom, R. C., & Wiman, K. G. (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Medicine, 3, 632–638.CrossRefGoogle Scholar
  13. 13.
    Kim, A. L., Raffo, A. J., Brandt-Rauf, P. W., Pincus, M. R., Monaco, R., Abarzua, P., & Fine, R. L. (1999). Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. Journal of Biological Chemistry, 274, 34924–34931.CrossRefGoogle Scholar
  14. 14.
    Li, Y., Mao, Y., Rosal, R. V., Dinnen, R. D., Williams, A. C., Brandt-Rauf, P. W., & Fine, R. L. (2005). Selective induction of apoptosis through the FADD/caspase-8 pathway by a p53 c-terminal peptide in human pre-malignant and malignant cells. International Journal of Cancer, 115, 55–64.CrossRefGoogle Scholar
  15. 15.
    Senatus, P. B., Li, Y., Mandigo, C., Nichols, G., Moise, G., Mao, Y., Brown, M. D., Anderson, R. C., Parsa, A. T., Brandt-Rauf, P. W., Bruce, J. N., & Fine, R. L. (2006). Restoration of p53 function for selective Fas-mediated apoptosis in human and rat glioma cells in vitro and in vivo by a p53 COOH-terminal peptide. Molecular Cancer Therapeutics, 5, 20–28.CrossRefGoogle Scholar
  16. 16.
    Dinnen, R. D., Drew, L., Petrylak, D. P., Mao, Y., Cassai, N., Szmulewicz, J., Brandt-Rauf, P., & Fine, R. L. (2007). Activation of targeted necrosis by a p53 peptide: a novel death pathway that circumvents apoptotic resistance. Journal of Biological Chemistry, 282, 26675–26686.CrossRefGoogle Scholar
  17. 17.
    Kanovsky, M., Raffo, A., Drew, L., Rosal, R., Do, T., Friedman, F. K., Rubinstein, P., Visser, J., Robinson, R., Brandt-Rauf, P. W., Michl, J., Fine, R. L., & Pincus, M. R. (2001). Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 12438–12443.CrossRefGoogle Scholar
  18. 18.
    Do, T. N., Rosal, R. V., Drew, L., Raffo, A. J., Michl, J., Pincus, M. R., Friedman, F. K., Petrylak, D. P., Cassai, N., Szmulewicz, J., Sidhu, G., Fine, R. L., & Brandt-Rauf, P. W. (2003). Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site. Oncogene, 22, 1431–1444.CrossRefGoogle Scholar
  19. 19.
    Sookraj, K. A., Adler, V., Yazdi, E. S., Zenilman, M. E., Michl, J., Pincus, M. R., & Bowne, W. B. (2008). Novel p53-derived peptide induces necrosis by membrane-pore formation in pancreatic cancer cells. Journal of the American College of Surgeons, 207, S97–S98.CrossRefGoogle Scholar
  20. 20.
    Sookraj, K. A., Adler, V., Sarafraz-Yazdi, E., Bluth, M., Zenilman, M. E., Michl, J., Pincus, M. R., & Bowne, W. B. (2008). W1961 novel p53-derived peptide induces extensive necrosis in cancer cells. Gastroenterology, 134, A-743.CrossRefGoogle Scholar
  21. 21.
    Brandt-Rauf, P. W., Rosal, R. V., Fine, R. L., & Pincus, M. R. (2004). Computational protein chemistry of p53 and p53 peptides. Frontiers in Bioscience, 9, 2778–2787.CrossRefGoogle Scholar
  22. 22.
    Rosal, R., Pincus, M. R., Brandt-Rauf, P. W., Fine, R. L., Michl, J., & Wang, H. (2004). NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Biochemistry, 43, 1854–1861.CrossRefGoogle Scholar
  23. 23.
    Sookraj, K. A., Bowne, W. B., Adler, V., Sarafraz-Yazdi, E., Michl, J., & Pincus, M. R. (2010). The anti-cancer peptide, PNC-27, induces tumor cell lysis as the intact peptide. Cancer Chemotheraphy and Pharmacology, 66, 325–331.CrossRefGoogle Scholar
  24. 24.
    Sarafraz-Yazdi, E., Bowne, W. B., Adler, V., Sookraj, K. A., Wu, V., Shteyler, V., Patel, H., Oxbury, W., Brandt-Rauf, P., Zenilman, M. E., Michl, J., & Pincus, M. R. (2010). Anticancer peptide PNC-27 adopts an HDM-2-binding conformation and kills cancer cells by binding to HDM-2 in their membranes. Proceedings of the National Academy of Sciences of the United States of America, 107, 1918–1923.CrossRefGoogle Scholar
  25. 25.
    Yang, J. Y., Zong, C. S., Xia, W., Wei, Y., Ali-Seyed, M., Li, Z., Broglio, K., Berry, D. A., & Hung, M. C. (2006). MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Molecular and Cellular Biology, 26, 7269–7282.CrossRefGoogle Scholar
  26. 26.
    Bray, B. L. (2003). Large-scale manufacture of peptide therapeutics by chemical synthesis. Nature Reviews Drug Discovery, 2, 587–593.CrossRefGoogle Scholar
  27. 27.
    Lee, E. J., Kim, H. S., & Lee, E. Y. (2005). Recombinant biocatalytic and cell-free synthesis of HIV fusion inhibitor. Journal of Industrial and Engineering Chemistry, 11, 515–521.Google Scholar
  28. 28.
    Levy, W. (2008). Focusing on task of reinventing peptide drugs. Genetic Engineering & Biotechnology News, 28(13).Google Scholar
  29. 29.
    Chong, S., Williams, K. S., Wotkowicz, C., & Xu, M. Q. (1998). Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. Journal of Biological Chemistry, 273, 10567–10577.CrossRefGoogle Scholar
  30. 30.
    Chong, S., Shao, Y., Paulus, H., Benner, J., Perler, F. B., & Xu, M. Q. (1996). Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. Journal of Biological Chemistry, 271, 22159–22168.CrossRefGoogle Scholar
  31. 31.
    Mathys, S., Evans, T. C., Chute, I. C., Wu, H., Chong, S., Benner, J., Liu, X. Q., & Xu, M. Q. (1999). Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene, 231, 1–13.CrossRefGoogle Scholar
  32. 32.
    Chong, S., & Xu, M. Q. (1997). Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. Journal of Biological Chemistry, 272, 15587–15590.CrossRefGoogle Scholar
  33. 33.
    Rodríguez, V., Asenjo, J. A., & Andrews, B. A. (2014). Design and implementation of a high yield production system for recombinant expression of peptides. Microbial Cell Factories, 13, 65.CrossRefGoogle Scholar
  34. 34.
    Donovan, R. S., Robinson, C. W., & Glick, B. R. (1996). Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. Journal of Industrial Microbiology, 16, 145–154.CrossRefGoogle Scholar
  35. 35.
    Hirel, P. H., Schmitter, M. J., Dessen, P., Fayat, G., & Blanquet, S. (1989). Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proceedings of the National Academy of Sciences of the United States of America, 86, 8247–8251.CrossRefGoogle Scholar
  36. 36.
    Bollag, D. M., Rozycki, M. D., & Edelstein, S. J. (1996). Protein methods.Google Scholar
  37. 37.
    Sharma, S. S., Chong, S., & Harcum, S. W. (2006). Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions in E. coli. Journal of Biotechnology, 125, 48–56.Google Scholar
  38. 38.
    Evans, T. C., Benner, J., & Xu, M. Q. (1999). The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. Journal of Biological Chemistry, 274, 18359–18363.CrossRefGoogle Scholar
  39. 39.
    Basu, A., Mishra, B., Dey, S., & Jan Leong, S. S. (2014). Intein based bioprocess for production of a synthetic antimicrobial peptide: an alternative route to solid phase peptide synthesis. RSC Advances, 4, 31564–31572.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vida Rodríguez
    • 1
  • Jorge Lascani
    • 1
  • Juan A. Asenjo
    • 1
  • Barbara A. Andrews
    • 1
  1. 1.Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and BiotechnologyUniversity of ChileSantiagoChile

Personalised recommendations