Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 6, pp 2916–2933 | Cite as

Biochemical Characterization of a Thermostable Adenosylmethionine Synthetase from the Archaeon Pyrococcus Furiosus with High Catalytic Power

  • Marina Porcelli
  • Concetta Paola Ilisso
  • Ester De Leo
  • Giovanna Cacciapuoti
Article

Abstract

Adenosylmethionine synthetase plays a key role in the biogenesis of the sulfonium compound S-adenosylmethionine, the principal widely used methyl donor in the biological methylations. We report here, for the first time, the characterization of adenosylmethionine synthetase from the hyperthermophilic archaeon Pyrococcus furiosus (PfMAT). The gene PF1866 encoding PfMAT was cloned and expressed, and the recombinant protein was purified to homogeneity. PfMAT shares 51, 63, and 82 % sequence identity with the homologous enzymes from Sulfolobus solfataricus, Methanococcus jannaschii, and Thermococcus kodakarensis, respectively. PfMAT is a homodimer of 90 kDa highly thermophilic with an optimum temperature of 90 °C and is characterized by remarkable thermodynamic stability (Tm, 99 °C), kinetic stability, and resistance to guanidine hydrochloride-induced unfolding. The latter process is reversible as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. Limited proteolysis experiments indicated that the proteolytic cleavage site is localized at Lys148 and that the C-terminal peptide is necessary for the integrity of the active site. PfMAT shows kinetic features that make it the most efficient catalyst for S-adenosylmethionine synthesis among the characterized MAT from Bacteria and Archaea. Molecular and structural characterization of PfMAT could be useful to improve MAT enzyme engineering for biotechnological applications.

Keywords

S-Adenosylmethionine Adenosylmethionine synthetase Methionine adenosyltransferase Pyrococcus furiosus Hyperthermostability Archaea 

Abbreviations

AdoMet

S-Adenosylmethionine

MAT

Adenosylmethionine synthetase or methionine adenosyltransferase

PfMAT

MAT from Pyrococcus furiosus

SsMAT

MAT from Sulfolobus solfataricus

MjMAT

MAT from Methanococcus jannaschii

TkMAT

MAT from Thermococcus kodakarensis

EcMAT

MAT from Escherichia coli

BsMAT

MAT from Bacillus subtilis

GdnCl

Guanidine hydrochloride

IPTG

Isopropyl-β-d-thiogalactopyranoside

PVDF

Polyvinylidene fluoride

CD

Circular dichroism

Notes

Acknowledgments

This research was supported by a grant from Seconda Università of Naples.

References

  1. 1.
    Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H. G., & Schlenk, F. (1977). The biochemistry of adenosylmethionine. New York: Columbia University Press.Google Scholar
  2. 2.
    Usdin, E., Borchardt, C. R. T., & Creveling, R. (1982). Biochemistry of s-adenosylmethionine and related compounds. London: MacMillan Press.Google Scholar
  3. 3.
    Lu, S. C. (2000). S-Adenosylmethionine. International Journal of Biochemistry and Cell Biology, 32, 391–395.CrossRefGoogle Scholar
  4. 4.
    Mato, J. M., Corrales, F. J., Lu, S. C., & Avila, M. A. (2002). S-Adenosylmethionine: a control switch that regulates liver function. FASEB Journal, 16, 15–26.CrossRefGoogle Scholar
  5. 5.
    Fontecave, M., Atta, M., & Mulliez, E. (2004). S-Adenosylmethionine: nothing goes to waste. Trends Biochemical Sciences, 29, 243–249.CrossRefGoogle Scholar
  6. 6.
    Cantoni, G. L. (1953). S-Adenosylmethionine, a new intermediate formed enzimatically from L-metionine and adenosinetriphosphate. Journal of Biological Chemistry, 203, 403–416.Google Scholar
  7. 7.
    Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., & McCann, P. P. (1996). S-Adenosylmethionine and methylation. FASEB Journal, 10, 471–480.Google Scholar
  8. 8.
    Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30, 42–59.CrossRefGoogle Scholar
  9. 9.
    Frey, P. A., Hegeman, A. D., & Ruzicka, F. J. (2008). The radical SAM superfamily. Critical Reviews in Biochemistry and Molecular Biology, 43, 63–88.CrossRefGoogle Scholar
  10. 10.
    Sauter, M., Moffatt, B., Saechao, M. C., Hell, R., & Wirtz, M. (2013). Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochemistry Journal, 451, 145–154.CrossRefGoogle Scholar
  11. 11.
    Ansorena, E., García-Trevijano, E. R., Martínez-Chantar, M. L., Huang, Z. Z., Chen, L., Mato, J. M., Iraburu, M., Lu, S. C., & Avila, M. A. (2002). S-Adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology, 35, 274–280.CrossRefGoogle Scholar
  12. 12.
    Martinez-Lopez, N., Valera-Rey, M., Ariz, U., Embade, N., Vazquez-Chantada, M., Fernandez-Ramos, D., Gomez-Santos, L., Lu, S. C., Mato, J. M., & Martinez-Chantar, M. L. (2008). S-Adenosylmethionine and proliferation: new pathways, new targets. Biochemical Society Transactions, 36, 848–852.CrossRefGoogle Scholar
  13. 13.
    Li, T. W. H., Yang, H., Peng, H., Xia, M., Mato, J. M., & Lu, S. C. (2012). Effects of S-adenosylmethionine and metylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis, 33, 427–435.CrossRefGoogle Scholar
  14. 14.
    Bottiglieri, T. (2002). S-Adenosyl-L-methionine (SAMe): from the bench to the bedside-molecular basis of a pleiotrophic molecule. American Journal of Clinical Nutrition, 76, 1151S–1157S.Google Scholar
  15. 15.
    Papakostas, G. I., Cassiello, C. F., & Iovieno, N. (2012). Folates and S-adenosylmethionine for major depressive disorder. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, 57, 406–413.Google Scholar
  16. 16.
    Soeken, K. L., Lee, W. L., Bausell, R. B., Agelli, M., & Berman, B. M. (2012). Safety and efficacy of S-adenosylmethionine (SAMe) for osteoarthritis. Journal Farmacia Practice, 51, 425–430.Google Scholar
  17. 17.
    Anstee, Q. M., & Day, C. P. (2012). S-Adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. Journal of Hepatology, 57, 1097–1109.CrossRefGoogle Scholar
  18. 18.
    Lu, S. C., & Mato, J. M. (2012). S-Adenosylmethionine in liver health, injury, and cancer. Physiological Reviews, 92, 1515–1542.CrossRefGoogle Scholar
  19. 19.
    Mato, J. M., Martinez-Chantar, M. L., & Lu, S. C. (2013). S-Adenosylmethionine metabolism and liver disease. Annals of Hepatology, 12, 183–189.Google Scholar
  20. 20.
    Kotb, M., & Geller, A. M. (1993). Methionine adenosyltransferase: structure and function. Pharmacology and Therapeutics, 59, 125–143.CrossRefGoogle Scholar
  21. 21.
    Mato, J. M., Alvarez, L., Ortiz, P., & Pajares, M. A. (1997). S-Adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacology and Therapeutics, 73, 265–280.CrossRefGoogle Scholar
  22. 22.
    Markham, G. D., & Pajares, M. A. (2009). Structure-function relationships in methionine adenosyltransferases. Cellular and Molecular Life Sciences, 66, 636–648.CrossRefGoogle Scholar
  23. 23.
    Pajares, M. A., & Markham, G. D. (2011). Methionine adenosyltransferase (S-adenosyl-methionine synthetase). Advances in Enzymology and Related Areas of Molecular Biology, 78, 449–452.Google Scholar
  24. 24.
    Markham, G. D., Hafner, E. W., Tabor, C. W., & Tabor, H. (1980). S-Adenosylmethionine synthetase from Escherichia coli. Journal of Biological Chemistry, 255, 9082–9092.Google Scholar
  25. 25.
    Komoto, J., Yamada, T., Takata, Y., Markham, G. D., & Takusagawa, F. (2004). Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry, 43, 1821–1831.CrossRefGoogle Scholar
  26. 26.
    Gonzalez, B., Pajares, M. A., Hermoso, J. A., Guillerm, D., Guillerm, G., & Sanz-Aparicio, J. (2003). Crystal structures of methionine adenosyltransferase complexed with substrates and products reveal the methionine-ATP recognition and give insights into the catalytic mechanism. Journal of Molecular Biology, 331, 407–416.CrossRefGoogle Scholar
  27. 27.
    Alvarez, L., Corrales, F., Martin-Duce, A., & Mato, J. M. (1993). Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochemistry Journal, 293, 481–486.Google Scholar
  28. 28.
    Shafqat, N., Muniz, J. R., Pilka, E. S., Papagrigoriou, E., vonDelft, F., Oppermann, U., & Yue, W. W. (2013). Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits. Biochemistry Journal, 452, 27–36.Google Scholar
  29. 29.
    Reytor, E., Pérez-Miguelsanz, J., Alvarez, L., Pèrez-Sala, D., & Pajares, M. A. (2009). Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB Journal, 23, 3347–3360.CrossRefGoogle Scholar
  30. 30.
    De Rosa, M., De Rosa, S., Gambacorta, A., Cartenì-Farina, M., & Zappia, V. (1978). The biosynthetic pathway of new polyamines in Caldariella acidophila. Biochemistry Journal, 176, 1–7.Google Scholar
  31. 31.
    Porcelli, M., Cacciapuoti, G., Cartenì-Farina, M., & Gambacorta, A. (1988). S-Adenosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solfataricus. Purification and characterization of two isoforms. European Journal of Biochemistry, 177, 273–280.CrossRefGoogle Scholar
  32. 32.
    Graham, D. E., Bock, C. L., Schalk-Hihi, C., Lu, Z. J., & Markham, G. D. (2000). Identification of a highly diverged class of S-adenosylmethionine synthetases in the Archaea. Journal of Biological Chemistry, 275, 4055–4059.CrossRefGoogle Scholar
  33. 33.
    Lu, Z. J., & Markham, G. D. (2002). Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. Journal of Biological Chemistry, 277, 16624–16631.CrossRefGoogle Scholar
  34. 34.
    Garrido, F., Alfonso, C., Taylor, J. C., Markham, G. D., & Pajares, M. A. (2009). Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases. Biochimica et Biophysica Acta, 1794, 1082–1090.CrossRefGoogle Scholar
  35. 35.
    Garrido, F., Taylor, J. C., Alfonso, C., Markham, G. D., & Pajares, M. A. (2012). Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Amino Acids, 42, 361–373.CrossRefGoogle Scholar
  36. 36.
    Schlesier, J., Siegrist, J., Gerhardt, S., Erb, A., Blaesi, S., Richter, M., Einsle, O., & Andexer, J. N. (2013). Structural and functional characterization of the methionine adenosyltransferase from Thermococcus kodakarensis. BMC Structural Biology, 13, 22–31.CrossRefGoogle Scholar
  37. 37.
    Wang, F., Singh, S., Zhang, J., Huber, T. D., Helmich, K. E., Sunkara, M., Hurley, K. A., Goff, R. D., Bingman, C. A., Morris, A. J., Thorson, J. S., & Phillips, G. N., Jr. (2014). Understanding molecular recognition of promiscuity of thermophilic methionineadenosyltransferase, sMAT from Sulfolobus solfataricus. FEBS Journal. doi: 10.1111/febs.12784.Google Scholar
  38. 38.
    Adams, M. W. W., & Kelly, R. M. (1994). Thermostability and thermoactivity of enzymes from hyperthermophilic Archaea. Bioorganic & Medicinal Chemistry, 2, 659–667.CrossRefGoogle Scholar
  39. 39.
    Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65, 1–43.CrossRefGoogle Scholar
  40. 40.
    Niehaus, F., Bertoldo, C., Kahler, M., & Antranikian, G. (1999). Extremophiles as a source of novel enzymes for industrial application. Applied Microbiology and Biotechnology, 51, 711–729.CrossRefGoogle Scholar
  41. 41.
    Fiala, G., & Stetter, K. O. (1986). Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Archives of Microbiology, 145, 56–61.CrossRefGoogle Scholar
  42. 42.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  43. 43.
    Cacciapuoti, G., Porcelli, M., Bertoldo, C., De Rosa, M., & Zappia, V. (1994). Purification and characterization of extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds. Journal of Biological Chemistry, 269, 24762–24769.Google Scholar
  44. 44.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory.Google Scholar
  45. 45.
    Cacciapuoti, G., Fuccio, F., Petraccone, L., Del Vecchio, P., & Porcelli, M. (2012). Role of disulfide bonds in conformational stability and folding of 5-deoxy-5-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochimica et Biophysica Acta, 1824, 1136–1143.CrossRefGoogle Scholar
  46. 46.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.CrossRefGoogle Scholar
  47. 47.
    Ragone, R., Facchiano, F., Cacciapuoti, G., Porcelli, M., & Colonna, G. (1992). Effect of temperature on the propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. 2. Denaturation and structural stability. European Journal of Biochemistry, 204, 483–490.CrossRefGoogle Scholar
  48. 48.
    Faraone Mennella, M. R., Gambacorta, A., Nicolaus, B., & Farina, B. (1998). Purification and biochemical characterization of a poly(ADP-ribose) polymearse-like enzyme from the thermophilic archaeon Sulfolobus solfataricus. Biochemistry Journal, 335, 441–447.Google Scholar
  49. 49.
    Kamarthapu, V., Rao, K. V., Srinivas, B. S., Reddy, G. B., & Reddy, V. D. (2008). Structural and kinetic properties of Bacillus subtilis S-adenosylmethionine synthetase expressed in Escherichia coli. Biochimica et Biophysica Acta, 1784, 1949–1958.CrossRefGoogle Scholar
  50. 50.
    Chu, J., Qian, J., Zhuang, Y., Zhang, S., & Li, Y. (2013). Progress in the research of S-adenosylmethionine production. Applied Microbiology and Biotechnology, 97, 41–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marina Porcelli
    • 1
  • Concetta Paola Ilisso
    • 1
  • Ester De Leo
    • 1
  • Giovanna Cacciapuoti
    • 1
  1. 1.Dipartimento di Biochimica, Biofisica e Patologia GeneraleSeconda Università di NapoliNaplesItaly

Personalised recommendations