Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 5, pp 2366–2375 | Cite as

Effect of Induced Polyploidy on Some Biochemical Parameters in Cannabis sativa L.

  • Mahsa Bagheri
  • Hakimeh MansouriEmail author
Article

Abstract

This study is aimed at testing the efficiency of colchicine on inducing polyploidy in Cannabis sativa L. and investigation of effects of polyploidy induction on some primary and secondary metabolites. Shoot tips were treated with three different concentrations of colchicine (0, 0.1, 0.2 % w/v) for 24 or 48 h. The biggest proportion of the almost coplanar tetraploids (43.33 %) and mixoploids (13.33 %) was obtained from the 24-h treatment in 0.2 and 0.1 % w/v, respectively. Colchicine with 0.2 % concentration and 48 h duration was more destructive than 24 h. The ploidy levels were screened with flow cytometry. The biochemical analyses showed that reducing sugars, soluble sugars, total protein, and total flavonoids increased significantly in mixoploid plants compared with tetraploid and diploid plants. Tetraploid plants had a higher amount of total proteins, total flavonoids, and starch in comparison with control plants. The results showed that polyploidization could increase the contents of tetrahydrocannabinol in mixoploid plants only, but tetraploid plants had lower amounts of this substance in comparison with diploids. Also, we found such changes in protein concentration in electrophoresis analysis. In overall, our study suggests that tetraploidization could not be useful to produce tetrahydrocannabinol for commercial use, and in this case, mixoploids are more suitable.

Keywords

Cannabis Tetraploidy Mixoploidy Cannabinoids 

Notes

Acknowledgments

The authors would like to thank Mr. Pooya Bagheri (Alberta University, Edmonton) for his help to improve the manuscript level.

References

  1. 1.
    Vogl, C. (2004), JIH. 9, 37–49Google Scholar
  2. 2.
    Williamson, E. M., & Evans, F. J. (2000). Drugs, 60, 1303–1314.CrossRefGoogle Scholar
  3. 3.
    Hammond, C. T., & Mahlberg, P. G. (1977). American Journal of Botany, 64, 1023–1031.CrossRefGoogle Scholar
  4. 4.
    Alexander, A., Smith, P. F., & Rosengren, R. J. (2009). Cancer Letters, 285, 6–12.CrossRefGoogle Scholar
  5. 5.
    Truta, E., Gille, E., Toth, E., & Maniu, M. (2002). Journal of Applied Genetics, 43, 451–462.Google Scholar
  6. 6.
    Griesbach, R. J., & Bhat, R. N. (1990). Horticultural Science, 25, 1284–1286.Google Scholar
  7. 7.
    Chakraborti, S. P., Vijayan, K., Roy, B. N., & Qadri, S. M. (1998). Plant Cell Reports, 17, 799–803.CrossRefGoogle Scholar
  8. 8.
    Nakano, M. T., Nomizu, K., Mizunashi, M., Suzuki, S., Mori, S., Kuwayama, M., et al. (2006). Horticultural Science, 110, 366–371.CrossRefGoogle Scholar
  9. 9.
    Stanys, V., Weckman, A., Staniene, G., & Duchovskis, P. (2006). Plant Cell Tissue and Organ, 84, 263–268.CrossRefGoogle Scholar
  10. 10.
    GU, X. F., Yang, A. F., Meng, H., & Zhang, J. R. (2005). Plant Cell Reports, 24, 671–676.CrossRefGoogle Scholar
  11. 11.
    Lichtenthaler, H. K. (1987). Methods in Enzymology, 148, 350–382.CrossRefGoogle Scholar
  12. 12.
    Roe, J. H. (1955). The Journal of Biological Chemistry, 212, 335–343.Google Scholar
  13. 13.
    Somogy, M. (1952). The Journal of Biological Chemistry, 195, 19–29.Google Scholar
  14. 14.
    Thayumanavan, B., & Sadasivam, S. (1984). Nutrition, 34, 253.Google Scholar
  15. 15.
    Updegroff, D. M. (1969). Method Biochemistry Analytical, 32, 420.CrossRefGoogle Scholar
  16. 16.
    Wagner, G. J. (1970). Plant Physiology, 64, 88–93.CrossRefGoogle Scholar
  17. 17.
    Krizek, D. T., Britz, S. J., & Mirecki, R. M. (1998). Planta, 103, 1–7.CrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  19. 19.
    Rustichelli, C., Ferioli, V., Baraldi, M., Zanoli, P., & Gamberini, G. (1998). Chromatographia, 47, 215–222.CrossRefGoogle Scholar
  20. 20.
    Parry, M. A. J., Schmidt, C. N. G., Cornelium, M. J., Millard, B. N., Burton, S., et al. (1987). Journal of Experimental Botany, 38, 1260–1271.CrossRefGoogle Scholar
  21. 21.
    Xu, L., Najeeb, U., Naeem, M. S., Daud, M. K., Cao, J. S., Gong, H. J., Shen, W. Q., & Zhou, W. J. (2010). Planta, 54, 659–663.Google Scholar
  22. 22.
    Phulari, S. S. (2011). Botany, 1, 207–210.Google Scholar
  23. 23.
    Jaskani, M. J., Kwon, S. W., & Kim, D. H. (2005). Euphytica, 145, 259–268.CrossRefGoogle Scholar
  24. 24.
    Grange, S., Leskovar, D. I., Pike, L. M., & Cobb, B. G. (2003). Journal of the American Society for Horticultural Science, 128, 253–259.Google Scholar
  25. 25.
    Winkel-Shirley, B. (2001). Plant Physiology, 126, 485–493.CrossRefGoogle Scholar
  26. 26.
    Buchert, J., Koponen, J. M., Suutarinen, M., Mustranta, A., Lille, M., Torronen, R., & Poutanen, K. (2005). Journal of the Science of Food and Agriculture, 85, 2548–2556.CrossRefGoogle Scholar
  27. 27.
    Knekt, P., Kumpulainen, J., Järvinen, R., Rissanen, H., Heliövaara, M., Reunanen, A., Hakulinen, T., & Aromaa, A. (2002). The American Journal of Clinical Nutrition, 76, 560–568.Google Scholar
  28. 28.
    Bretagnolle, F., & Tansley, T. J. D. (1995). New Phytologist, 129, 1–22.CrossRefGoogle Scholar
  29. 29.
    Eichler, M., Spinedi, L., Unfer-Grauwiler, S., Bodmer, M., Surber, C., Luedi, M., & Drewe, J. (2012). Journal of Medicine Plant Natural Products Research, 78, 686–691.Google Scholar
  30. 30.
    Dhawan, O. P., & Lavania, U. C. (1996). Euphytica, 87, 81–89.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceShahid Bahonar University of KermanKermanIran

Personalised recommendations