Applied Biochemistry and Biotechnology

, Volume 175, Issue 4, pp 1960–1970 | Cite as

A New GH43 α-Arabinofuranosidase from Humicola insolens Y1: Biochemical Characterization and Synergistic Action with a Xylanase on Xylan Degradation

  • Xinzhuo Yang
  • Pengjun Shi
  • Rui Ma
  • Huiying Luo
  • Huoqing Huang
  • Peilong Yang
  • Bin YaoEmail author


A new α-arabinofuranosidase gene (Hiabf43) was cloned from Humicola insolens Y1 and successfully expressed in Pichia pastoris GS115. Deduced HiAbf43 contained a putative signal peptide and a catalytic domain of glycoside hydrolase (GH) family 43. Purified recombinant HiAbf43 showed optimal activity at pH 5.0 and 50 °C, and was active over a broad pH range. The enzyme was specific for the cleavage of α-1,3-linkage and showed high activity against 4-nitrophenyl α-l-arabinofuranoside, debranched arabinan, and sugar beet arabinan. Sequential addition of HiAbf43 followed by Xyn11A increased the degradation efficiency of birchwood and beechwood xylans but not wheat arabinoxylan. The synergy degree was high up to 1.21-fold.


Humicola insolens Y1 α-Arabinofuranosidase Synergistic action 



This research was supported by the National Science Foundation for Distinguished Young Scholars of China (31225026) and the National Natural Science Foundation of China (31172235) and the China Modern Agriculture Research System (CARS-42).


  1. 1.
    Saha, B. C. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 279–291.CrossRefGoogle Scholar
  2. 2.
    Weinstein, M. P. (1979). Fishery Bulletin, 77, 339–356.Google Scholar
  3. 3.
    Bastawde, K. B. (1992). World Journal of Microbiology and Biotechnology, 8, 353–368.CrossRefGoogle Scholar
  4. 4.
    Saha, B. C. (2000). Biotechnology Advances, 18, 403–423.CrossRefGoogle Scholar
  5. 5.
    Beldman, G., Schols, H. A., Pitson, S. M., Searle-van Leeuwen, M. J. F., & Voragen, A. G. J. (1997). Advances in macromolecular research I. In: R. J. Sturgeon (Ed.), London: JAI Press. pp. 1–64.Google Scholar
  6. 6.
    Viborg, A. H., Sørensen, K. I., Gilad, O., Steen-Jensen, D. B., Dilokpimol, A., Jacobsen, S., & Svensson, B. (2013). AMB Express, 3, 56.CrossRefGoogle Scholar
  7. 7.
    Shi, H., Li, X., Gu, H., Zhang, Y., Huang, Y., Wang, L., & Wang, F. (2013). Biotechnology for Biofuels, 6, 27.CrossRefGoogle Scholar
  8. 8.
    Montes, R. A. C., Ranocha, P., Martinez, Y., Minic, Z., Jouanin, L., Marquis, M., & Goffner, D. (2008). Plant Physiology, 147, 63–77.CrossRefGoogle Scholar
  9. 9.
    Ravanal, M. C., Callegari, E., & Eyzaguirre, J. (2010). Applied and Environmental Microbiology, 76, 5247–5253.CrossRefGoogle Scholar
  10. 10.
    Sørensen, H. R., Jørgensen, C. T., Hansen, C. H., Jørgensen, C. I., Pedersen, S., & Meyer, A. S. (2006). Applied Microbiology and Biotechnology, 73, 850–861.CrossRefGoogle Scholar
  11. 11.
    Yang, X., Shi, P., Huang, H., Luo, H., Wang, Y., Zhang, W., & Yao, B. (2014). Food Chemistry, 148, 381–387.CrossRefGoogle Scholar
  12. 12.
    Du, Y., Shi, P., Huang, H., Zhang, X., Luo, H., Wang, Y., & Yao, B. (2013). Bioresource Technology, 130, 161–167.CrossRefGoogle Scholar
  13. 13.
    Shi, P., Chen, X., Meng, K., Huang, H., Bai, Y., Luo, H., & Yao, B. (2013). Applied and Environmental Microbiology, 79, 1990–1995.CrossRefGoogle Scholar
  14. 14.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  15. 15.
    Raweesri, P., Riangrungrojana, P., & Pinphanichakarn, P. (2008). Bioresource Technology, 99, 8981–8986.CrossRefGoogle Scholar
  16. 16.
    Yan, Q., Tang, L., Yang, S., Zhou, P., Zhang, S., & Jiang, Z. (2012). Process Biochemistry, 47, 472–478.CrossRefGoogle Scholar
  17. 17.
    Ichinose, H., Yoshida, M., Fujimoto, Z., & Kaneko, S. (2008). Applied Microbiology and Biotechnology, 80, 399–408.CrossRefGoogle Scholar
  18. 18.
    Adelsberger, H., Hertel, C., Glawischnig, E., Zverlov, V. V., & Schwarz, W. H. (2004). Microbiology, 150, 2257–2266.CrossRefGoogle Scholar
  19. 19.
    Sakamoto, T., & Kawasaki, H. (2003). Biochimica et Biophysica Acta (BBA)-General Subjects, 1621, 204–210.CrossRefGoogle Scholar
  20. 20.
    Oshima, H., Kimura, I., Kimura, Y., Tajima, S., & Izumori, K. (2005). Journal of Applied Glycoscience, 52, 261–265.CrossRefGoogle Scholar
  21. 21.
    Guerfali, M., Gargouri, A., & Belghith, H. (2011). Journal of Molecular Catalysis B: Enzymatic, 68, 192–199.CrossRefGoogle Scholar
  22. 22.
    Kim, Y. A., & Yoon, K. H. (2010). Journal of Microbiology and Biotechnology, 20, 1711–1716.Google Scholar
  23. 23.
    Gonçalves, T. A., Damásio, A. R. L., Segato, F., Alvarez, T. M., Bragatto, J., Brenelli, L. B., & Squina, F. M. (2012). Bioresource Technology, 119, 293–299.CrossRefGoogle Scholar
  24. 24.
    De Wet, B. J., Matthew, M. K., Storbeck, K. H., Van Zyl, W. H., & Prior, B. A. (2008). Applied Microbiology and Biotechnology, 77, 975–983.CrossRefGoogle Scholar
  25. 25.
    Tajana, E. L. E. O. N. O. R. A., Fiechter, A. R. M. I. N., & Zimmermann, W. O. L. F. G. A. N. G. (1992). Applied and Environmental Microbiology, 58, 1447–1450.Google Scholar
  26. 26.
    Pollet, A., Delcour, J. A., & Courtin, C. M. (2010). Critical Reviews in Biotechnology, 30, 176–191.CrossRefGoogle Scholar
  27. 27.
    Sørensen, H. R., Pedersen, S., & Meyer, A. S. (2007). Enzyme and Microbial Technology, 40, 908–918.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xinzhuo Yang
    • 1
  • Pengjun Shi
    • 1
  • Rui Ma
    • 1
  • Huiying Luo
    • 1
  • Huoqing Huang
    • 1
  • Peilong Yang
    • 1
  • Bin Yao
    • 1
    Email author
  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations