Applied Biochemistry and Biotechnology

, Volume 175, Issue 3, pp 1588–1602 | Cite as

Multivariate Optimization and Supplementation Strategies for the Simultaneous Production of Amylases, Cellulases, Xylanases, and Proteases by Aspergillus awamori Under Solid-State Fermentation Conditions

  • Aline Machado de Castro
  • Leda R. Castilho
  • Denise Maria Guimarães Freire
Article

Abstract

The production of extracts containing a pool of enzymes for extensive biomass deconstruction can lead to significant advantages in biorefinery applications. In this work, a strain of Aspergillus awamori IOC-3914 was used for the simultaneous production of five groups of hydrolases by solid-state fermentation of babassu cake. Sequential experimental design strategies and multivariate optimization using the desirability function were first used to study temperature, moisture content, and granulometry. After that, further improvements in product yields were achieved by supplementation with other agro-industrial materials. At the end of the study, the production of enzymes was up to 3.3-fold increased, and brewer’s spent grains and babassu flour showed to be the best supplements. Maximum activities for endoamylases, exoamylases, cellulases (CMCases), xylanases, and proteases achieved were 197, 106, 20, 835, and 57 U g−1, respectively. The strain was also able to produce β-glucosidases and debranching amylases (up to 35 and 43 U g−1, respectively), indicating the potential of its enzyme pool for cellulose and starch degradation.

Keywords

Amylases Proteases Cellulases Xylanases Multivariate optimization by desirability analysis 

Notes

Acknowledgments

The authors wish to thank Dr. Edmond Baruque (Tocantins Babaçu S.A.) for kindly providing babassu cake and Daniele Fernandes and Mariana Teixeira for their technical assistance. The financial support from CNPq, CAPES, FAPERJ, and ANP/PETROBRAS are also gratefully acknowledged.

References

  1. 1.
    Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). Science, 311, 484–489.CrossRefGoogle Scholar
  2. 2.
    Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H., & Parajó, J. C. (2010). Biomass Bioengineering, 34, 533–538.CrossRefGoogle Scholar
  3. 3.
    Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G., & Morgan, T. J. (2012). Fuel, 94, 1–33.CrossRefGoogle Scholar
  4. 4.
    Viniegra-González, G., Favela-Torres, E., Aguilar, C. N., Roméro-Gomez, S. J., Díaz-Godínez, G., & Augur, C. (2003). Biochemical Engineering Journal, 13, 157–167.CrossRefGoogle Scholar
  5. 5.
    Castilho, L. R., Polato, C. M. S., Baruque, E. A., Sant’Anna, G. L., Jr., & Freire, D. M. G. (2000). Biochemical Engineering Journal, 4, 239–247.CrossRefGoogle Scholar
  6. 6.
    Hölker, U., & Lenz, J. (2005). Current Opinion in Microbiology, 8, 301–306.CrossRefGoogle Scholar
  7. 7.
    Lopez, J. A., Lázaro, C. C., Castilho, L. R., Freire, D. M. G., & Castro, A. M. (2013). Biochemical Engineering Journal, 77, 231–239.CrossRefGoogle Scholar
  8. 8.
    Cinelli, B. A., Lopez, J. A., Castilho, L. R., Freire, D. M. G., & Castro, A. M. (2014). Fuel, 124, 41–48.CrossRefGoogle Scholar
  9. 9.
    Castro, A. M., Teixeira, M. M. P., Carvalho, D. F., Freire, D. M. G., & Castilho, L. R. (2011). Enzyme Research. doi: 10.4061/2011/457392.Google Scholar
  10. 10.
    Pal, A., & Khanum, F. (2010). Bioresource Technology, 101, 7563–7569.CrossRefGoogle Scholar
  11. 11.
    Young, D. L., Teplik, J., Weed, H. D., Tracht, N. T., & Alvarez, A. R. (1991). IEEE Transactions Computing Aid Design ntegration Circular Systems, 10, 103–115.CrossRefGoogle Scholar
  12. 12.
    Priyanka, P., & Jaya Raju, K. (2013). International Journal of Chemical Sciences, 11, 291–305.Google Scholar
  13. 13.
    Jian, X., Shouwen, C., & Ziniu, Y. (2005). Proceedings Biochemistry, 40, 3075–3081.CrossRefGoogle Scholar
  14. 14.
    Kareem, S. O., Akpan, I., & Oduntan, S. B. (2009). African Journal of Microbiology Research, 3, 974–977.Google Scholar
  15. 15.
    Castro, A.M. (2010) PhD thesis. Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.Google Scholar
  16. 16.
    Castro, A. M., Carvalho, M. L. A., Leite, S. G. F., & Pereira, N., Jr. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 151–158.CrossRefGoogle Scholar
  17. 17.
    Garlapati, V. K., Vundavilli, P. R., & Banerjee, R. (2010). Applied Biochemistry and Biotechnology, 162, 1350–1361.CrossRefGoogle Scholar
  18. 18.
    Paris, L. D., Scheufele, F. B., Teixeira Júnior, A., Guerreiro, T. L., & Hasan, S. D. M. (2012). Acta Science Technology, 34, 193–200.CrossRefGoogle Scholar
  19. 19.
    Balkan, B., Balkan, S., & Ertan, F. (2011). Romanian Biotechnology Letters, 16, 6591–6600.Google Scholar
  20. 20.
    Gervais, P., & Molin, P. (2003). Biochemical Engineering Journal, 13, 85–101.CrossRefGoogle Scholar
  21. 21.
    Castro, A. M., Castilho, L. R., & Freire, D. M. G. (2011). Biomass Conv Bioref, 1, 245–255.CrossRefGoogle Scholar
  22. 22.
    Moftah, O. A. S., Grbavčić, S., Žuža, M., Luković, N., Bezbradica, D., & Knežević-Jugović, Z. (2012). Applied Biochemistry and Biotechnology, 166, 348–364.CrossRefGoogle Scholar
  23. 23.
    Walia, A., Mehta, P., Chauhan, A., & Shirkot, C. K. (2013). Annals of Microbiology, 63, 187–198.CrossRefGoogle Scholar
  24. 24.
    Rodrigues, M. I., & Iemma, A. F. (2005). Planejamento de Experimentos e Otimização de Processos (1st ed.). Campinas: Casa do Pão.Google Scholar
  25. 25.
    Gutarra, M. L. E., Godoy, M. G., Maugeri, F., Rodrigues, M. I., Freire, D. M. G., & Castilho, L. R. (2009). Bioresource Technology, 100, 5249–5254.CrossRefGoogle Scholar
  26. 26.
    Gutarra, M. L. E., Godoy, M. G., Castilho, L. R., & Freire, D. M. G. (2007). Journal of Chemical Technology and Biotechnology, 82, 313–318.CrossRefGoogle Scholar
  27. 27.
    Mussato, S. I., Dragone, G., & Roberto, I. C. (2006). Journal of Cereal Science, 43, 1–14.CrossRefGoogle Scholar
  28. 28.
    Castro, A. M., & Pereira, N., Jr. (2010). Quim Nova, 33, 181–188.CrossRefGoogle Scholar
  29. 29.
    Lopez, J.A., Koutinas, A., Castilho, L.R., Freire, D.M.G., Castro, A.M. (2012) 4th International Conference on Engineering for Waste and Biomass Valorization. Porto, Portugal. 2012.Google Scholar
  30. 30.
    Mohamed, S. A., Malki, A. L., Khan, J. A., Kabli, S. A., & Al-Garni, S. M. (2013). Journal of Microbiology, 51, 605–611.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aline Machado de Castro
    • 1
    • 3
  • Leda R. Castilho
    • 3
  • Denise Maria Guimarães Freire
    • 2
  1. 1.Biotechnology DivisionResearch and Development Center, PETROBRASRio de JaneiroBrazil
  2. 2.Institute of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Chemical Engineering Program, COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations