Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 4, pp 2195–2205 | Cite as

Intensified Production of Microalgae and Removal of Nutrient Using a Microalgae Membrane Bioreactor (MMBR)

  • HeeJeong ChoiEmail author
Article

Abstract

In present research, a microalgae membrane bioreactor (MMBR) was constructed by combining the optical panel photobioreactor (OPPBR) and membrane bioreactor (MBR). Experiments were conducted in MMBR pilot-plant configuration for 150 days. A biomass productivity of 2.53 g/l/day with light transmittance of 94 % at a 300-mm depth in the OPPBR was achieved. The total reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in the MMBR were found to be 96.99 and 97.09 %, respectively. Additionally, the removal of total nitrogen (TN), NH4-N, NO3-N, total phosphorus (TP), and PO4-P were 96.38, 99.80, 97.62, 92.75, and 90.84 % in MMBR, respectively. These results indicated that the MMBR process was highly effective for COD, BOD, and nutrient removal when compared to the OPPBR or MBR process.

Keywords

Microalgae Microalgae membrane bioreactor (MMBR) Nutrient removal Optical panel photobioreactor (OPPBR) Wastewater treatment 

Notes

Acknowledgments

This work is supported by the basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013006899).

References

  1. 1.
    Brennan, L., & Owende, P. (2010). Renewable and Sustainable Energy Reviews, 14, 557–577.CrossRefGoogle Scholar
  2. 2.
    Aslan, S., & Kapdan, I. K. (2006). Ecological Engineering, 28(1), 64–70.CrossRefGoogle Scholar
  3. 3.
    Choi, H. J., Lee, J. M., & Lee, S. M. (2013). Water Science and Technology, 67(11), 2543–2548.CrossRefGoogle Scholar
  4. 4.
    De-Bashan, L. E., Hernandez, J. P., Morey, T., & Bashan, Y. (2004). Water Research, 38, 466–474.CrossRefGoogle Scholar
  5. 5.
    Griffiths, E. W. (2010). All graduate theses and dissertations. Logan: Utah State University.Google Scholar
  6. 6.
    Martinez, M. E., Sanchez, S., Jimenez, J. M., Yousfi, F. E., & Munoz, L. (2007). Bioresource Technology, 73(3), 263–272.CrossRefGoogle Scholar
  7. 7.
    Wang, C., Yu, X., Lv, H., & Yang, J. (2013). Journal of Environmental Biology, 34, 421–425.Google Scholar
  8. 8.
    Posten, C. (2009). Engineering in Life Sciences, 9, 165–177.CrossRefGoogle Scholar
  9. 9.
    Masojidek, J., Torzillo, G., Sven, E. J., & Brian, F. (2008). Ecological Engineering (pp. 2226–2235). Oxford: Academic press.Google Scholar
  10. 10.
    Muñoz, R., & Guieysse, B. (2006). Water Research, 40(15), 2799–2815.CrossRefGoogle Scholar
  11. 11.
    Choi, H. J., & Lee, S. M. (2014). Bioprocess and Biosystems Engineering, 37(4), 697–705.CrossRefGoogle Scholar
  12. 12.
    Carlozzi, P. (2003). Biotechnology and Bioengineering, 81(3), 305–315.CrossRefGoogle Scholar
  13. 13.
    Hsieh, C. H., & Wu, W. T. (2009). Biochemical Engineering Journal, 46, 300–305.CrossRefGoogle Scholar
  14. 14.
    Chen, C. Y., Yeh, K., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Bioresource Technology, 102(1), 71–81.CrossRefGoogle Scholar
  15. 15.
    García-Malea López, M. C., Del Río Sánchez, E., Casas López, J. L., Acién Fernández, F. G., Rivas, J., Guerrero, M. G., & Molina Grima, E. (2006). Journal of Biotechnology, 123(3), 329–342.CrossRefGoogle Scholar
  16. 16.
    Ong, S. C., Kao, C. Y., Chiu, S. Y., Tsai, M. T., & Lin, C. S. (2010). Bioresource Technology, 101, 2880–2883.CrossRefGoogle Scholar
  17. 17.
    Luz, E. B., & Yoav, B. (2010). Bioresource Technology, 101(6), 1611–1627.CrossRefGoogle Scholar
  18. 18.
    Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995). Ecotoxicology and Environmental Safety, 31(3), 205–210.CrossRefGoogle Scholar
  19. 19.
    Govindan, S. (1984). Indian Journal of Environmental Health, 26, 261–263.Google Scholar
  20. 20.
    Rana, A. A. (2010). Journal of Engineering Technology, 28(4), 785–791.Google Scholar
  21. 21.
    Choi, H. J., Lee, A. H., & Lee, S. M. (2012). Water Science and Technology, 65(10), 1834–1838.CrossRefGoogle Scholar
  22. 22.
    Valderramna, L. T., Del Campo, C. M., Godriguez, C. M., De-Bashan, L. E., & Bashan, Y. (2002). Water Research, 36(17), 4185–4192.CrossRefGoogle Scholar
  23. 23.
    Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., & Siddiqui, K. F. (2010). Tsinghua Science and Technology, 15(4), 391–396.CrossRefGoogle Scholar
  24. 24.
    Ogbonna, J. C., & Tanaka, H. (2000). Journal of Applied Phycology, 12, 207–218.CrossRefGoogle Scholar
  25. 25.
    Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Bioresource Technology, 99, 4021–4028.CrossRefGoogle Scholar
  26. 26.
    Zhang, E., Wand, B., Zhang, S., & Zhao, B. (2008). Bioresource Technology, 99(9), 3787–3793.CrossRefGoogle Scholar
  27. 27.
    Singh, G., & Thomas, P. B. (2012). Bioresource Technology, 117, 80–85.CrossRefGoogle Scholar
  28. 28.
    Larsdotter, K. (2006). Vatten, 62, 31–38.Google Scholar
  29. 29.
    Hernandez, J. P., de-Bashan, L. E., & Bashan, Y. (2006). Enzyme and Microbial Technology, 38, 190–198.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Environmental EngineeringCatholic Kwandong UniversityGangneungSouth Korea

Personalised recommendations