Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 2, pp 974–987 | Cite as

Probing of the Interaction Between β-Lactoglobulin and the Anticancer Drug Oxaliplatin

  • Behafarid GhalandariEmail author
  • Adeleh DivsalarEmail author
  • Mahbube Eslami-Moghadam
  • Ali Akbar Saboury
  • Thomas Haertlé
  • Massoud Amanlou
  • Kazem Parivar
Article

Abstract

The potential carrier role of β-lactoglobulin (β-LG) and its interactions with oxaliplatin were studied using various spectroscopic techniques (fluorescence, UV–visible, and circular dichroism (CD)) in an aqueous medium at two temperatures of 25 and 37 °C in combination with a molecular docking study. Fluorescence measurements have shown that the observed quenching is a combination of static and dynamic quenching with a predominant contribution of static mode. The presence of a single binding site located in the internal cavity of the β-barrel of β-LG was confirmed by molecular docking calculations. Thermodynamic data as well as molecular docking indicated that the hydrophobic interactions dominate in the binding site. Results of fluorescence resonance energy transfer (FRET) measurements in combination with docking results imply that resonance energy transfer occurs between β-LG and its ligand oxaliplatin. Additionally, CD results revealed that oxaliplatin binding has no influence on the β-LG structure. The molecular docking results indicate that docking may be an appropriate method for the prediction and confirmation of experimental results. Complementary molecular docking results may be useful for the determination of the binding mechanism of proteins such as β-LG in pharmaceutical and biophysical studies providing new insight in the novel pharmacology and new solutions in the formulation of advanced oral drug delivery systems.

Keywords

β-LG Oxaliplatin FRET Fluorescence Circular dichroism Molecular docking 

Abbreviations

β-LG

β-Lactoglobulin

CD

Circular dichroism

FRET

Fluorescence resonance energy transfer

ANS

8-Anilino-1-naphthalenesulfonate

MRW

Mean amino acid residue weight

GA

Genetic algorithm

References

  1. 1.
    Almeida, G. M., Duarte, T. L., Steward, W. P., & Jones, G. D. D. (2006). DNA Repair, 5, 219–225.CrossRefGoogle Scholar
  2. 2.
    Azizian, H., Nabati, F., Sharifi, A., Siavoshi, F., Mahdavi, M., & Amanlou, M. (2012). Journal of Molecular Modeling, 18, 2917–2927.CrossRefGoogle Scholar
  3. 3.
    Becouarn, Y., Agostini, C., Trufflandier, N., & Boulanger, V. (2001). Critical Reviews in Oncology/Hematology, 40, 265–272.CrossRefGoogle Scholar
  4. 4.
    Chakraborty, J., Das, N., & Halder, U. C. (2011). Journal of Photochemistry and Photobiology. B, 102, 1–10.CrossRefGoogle Scholar
  5. 5.
    Ding, J., Yuan, L., Gao, L., & Chen, J. (2012). Journal of Luminescence, 132, 1987–1993.CrossRefGoogle Scholar
  6. 6.
    Divsalar, A., Saboury, A. A., Ahadi, L., Zemanatiyar, E., & Mansouri-Torshizi, H. (2010). BMB Reports, 43, 766–771.CrossRefGoogle Scholar
  7. 7.
    Divsalar, A., Saboury, A. A., Mansoori-Torshizi, H., & Moosavi-Movahedi, A. A. (2007). Journal of Biomolecular Structure and Dynamics, 25, 173–182.CrossRefGoogle Scholar
  8. 8.
    Divsalar, A., Saboury, A. A., & Moosavi-Movahedi, A. A. (2006). The Protein Journal, 25, 157–165.CrossRefGoogle Scholar
  9. 9.
    Essemine, J., Hasni, I., Carpentier, R., Thomas, T. J., & Tajmir-Riahi, H. A. (2011). International Journal of Biological Macromolecules, 49, 201–209.CrossRefGoogle Scholar
  10. 10.
    Falahati, M., Saboury, A. A., Shafiee, A., Rezayat Sorkhabadi, S. M., Kachooei, E., Mamani, L., & Haertlé, T. (2012). Biophysical Chemistry, 165–166, 13–20.CrossRefGoogle Scholar
  11. 11.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Jr., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., & Pople, J. A. (1998). Gaussian 98, revision a.7. Pittsburgh: Gaussian, Inc.Google Scholar
  12. 12.
    Ghalandari, B., Divsalar, A., Saboury, A. A., Haertlé, T., Parivar, K., Bazl, R., Eslami-Moghadam, M., & Amanlou, M. (2014). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 1038–1046.CrossRefGoogle Scholar
  13. 13.
    Gunasekaran, S., Ko, S., & Xiao, L. (2007). Journal of Food Engineering, 83, 31–40.CrossRefGoogle Scholar
  14. 14.
    Halder, U. C., Chakraborty, J., Das, N., & Bose, S. (2012). Journal of Photochemistry and Photobiology. B, 109, 50–57.CrossRefGoogle Scholar
  15. 15.
    Humphrey, W., Dalke, A., & Schulten, K. (1996). Journal of Molecular Graphics, 14(1), 33–38.CrossRefGoogle Scholar
  16. 16.
    HyperChem 8.0.6, Molecular Visualization and Simulation Program Package, Hypercube, Inc., Gainesville.Google Scholar
  17. 17.
    Jain, A., Pharm, M., Jain, S. K., Ganesh, N., Barve, J., & Beg, A. M. (2010). Nanomedicine, 6, 179–190.CrossRefGoogle Scholar
  18. 18.
    Jones, O., Decker, E. A., & McClements, D. J. (2010). Food Hydrocolloids, 24, 239–248.CrossRefGoogle Scholar
  19. 19.
    Karaküçük-Iyidogan, A., Tasdemir, D., Oruç-Emre, E., & Balzarini, J. (2011). European Journal of Medicinal Chemistry, 46, 5616–5624.CrossRefGoogle Scholar
  20. 20.
    Kelly, S. M., Jess, T. J., & Price, N. C. (2005). Biochimica et Biophysica Acta, 1751, 119–139.CrossRefGoogle Scholar
  21. 21.
    Kontopidis, G., Holt, C., & Sawyer, L. (2004). Journal of Dairy Science, 87, 785–796.CrossRefGoogle Scholar
  22. 22.
    Lange, D. C., Kothari, R., Patel, R. C., & Patel, S. C. (1998). Biophysical Chemistry, 74, 45–51.CrossRefGoogle Scholar
  23. 23.
    Liang, L., & Subirade, M. (2010). The Journal of Physical Chemistry. B, 114, 6707–6712.CrossRefGoogle Scholar
  24. 24.
    Liang, L., & Subirade, M. (2012). Food Chemistry, 132, 2023–2029.CrossRefGoogle Scholar
  25. 25.
    Lin, J., Hsiao, P. W., Chiu, T. H., & Chao, J. I. (2005). Biochemical Pharmacology, 70, 658–667.CrossRefGoogle Scholar
  26. 26.
    Liu, H. C., Chen, W. L., & Mao, S. J. T. (2007). Journal of Dairy Science, 90, 547–555.CrossRefGoogle Scholar
  27. 27.
    Liu, X., Shang, L., Jiang, X., Dong, S., & Wang, E. (2006). Biophysical Chemistry, 121, 218–223.CrossRefGoogle Scholar
  28. 28.
    Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). International Journal of Pharmaceutics, 385, 113–142.CrossRefGoogle Scholar
  29. 29.
    Moro, A., Báez, G. D., Busti, P. A., Ballerini, G. A., & Delorenzi, N. J. (2011). Food Hydrocolloids, 25, 1009–1015.CrossRefGoogle Scholar
  30. 30.
    Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Journal of Computational Chemistry, 19, 1639–1662.CrossRefGoogle Scholar
  31. 31.
    Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Journal of Computational Chemistry, 30, 2785–2791.CrossRefGoogle Scholar
  32. 32.
    Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Tadashi, K., & Kuwata, T. (2001). Biochemical and Biophysical Research Communications, 281, 11–17.CrossRefGoogle Scholar
  33. 33.
    Noordhuis, P., Laan, A. C., van de Born, K., Losekoot, N., Kathmann, I., & Peters, G. J. (2008). Biochemical Pharmacology, 76, 53–61.CrossRefGoogle Scholar
  34. 34.
    Pan, B., Liu, Y., Xiao, D., Wu, F., Wu, M., Zhang, D., & Xing, B. (2012). Environmental Pollution, 161, 192–198.CrossRefGoogle Scholar
  35. 35.
    Peng, J., Mandal, R., Sawyer, M., & Li, X. F. (2005). Clinical Chemistry, 51, 2274–2281.CrossRefGoogle Scholar
  36. 36.
    Pizarro, A. M., & Sadler, J. (2009). Biochimie, 91, 1198–1211.CrossRefGoogle Scholar
  37. 37.
    Quintanilla-Carvajal, M. X., Camacho-Diaz, B. H., Meraz-Torres, L. S., Chanona-Perez, J., Alamilla-Beltran, L., Jimenez-Aparicio, A., & Gutierrez-Lopez, G. F. (2010). Food Engineering Reviews, 2, 39–50.CrossRefGoogle Scholar
  38. 38.
    Rohit, A. C., Sathisha, K., & Aparna, H. S. (2012). European Journal of Medicinal Chemistry, 53, 211–219.CrossRefGoogle Scholar
  39. 39.
    Sakurai, K., Konuma, T., Yagi, M., & Goto, Y. (2009). Biochimica et Biophysica Acta, 1790, 527–537.CrossRefGoogle Scholar
  40. 40.
    Sanner, M. F. (1999). Journal of Molecular Graphics and Modelling, 17, 57–61.Google Scholar
  41. 41.
    Stănciuc, N., Aprodu, I., Râpeanu, G., & Bahrim, G. (2012). Innovation of Food Science and Emerging Technologies, 15, 50–56.CrossRefGoogle Scholar
  42. 42.
    Sun, Y., Wei, S., Yin, C., Liu, L., Hu, C., Zhao, Y., Ye, Y., Huc, X., & Fan, J. (2011). Bioorganic and Medicinal Chemistry Letters, 21, 3798–3804.CrossRefGoogle Scholar
  43. 43.
    Tabassum, S., Al-Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Journal of Photochemistry and Photobiology. B, 114, 132–139.CrossRefGoogle Scholar
  44. 44.
    Toprak, M., Aydın, B. M., Arık, M., & Onganer, Y. (2011). Journal of Luminescence, 131, 2286–2289.CrossRefGoogle Scholar
  45. 45.
    Wolber, G., Dornhofer, A. A., & Langer, T. (2006). Journal of Computer-Aided Molecular Design, 20, 773–788.CrossRefGoogle Scholar
  46. 46.
    Wolber, G., & Langer, T. (2005). Journal of Chemical Information and Modeling, 45, 160–169.CrossRefGoogle Scholar
  47. 47.
    Yang, M. C., Guan, H. H., Liu, M. Y., Lin, Y. H., Yang, J. M., Chen, W. L., Chen, C. J., & Mao, S. J. (2008). Proteins: Structure, Function, and Bioinformatics, 17, 1197–1210.Google Scholar
  48. 48.
    Yang, M. C., Guan, H. H., Yang, J. M., Ko, C. N., Liu, M. Y., Liu, Y. H., Huang, Y. C., Chen, C. J., & Mao, J. T. (2008). Crystal Growth and Design, 8, 4268–4276.CrossRefGoogle Scholar
  49. 49.
    Yang, L., Huo, D., Hou, C., Yang, M., Fa, H., & Luo, X. (2011). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78, 1349–355.CrossRefGoogle Scholar
  50. 50.
    Yang, J. T., Wu, C. S. C., & Martinez, H. M. (1986). Methods in Enzymology, 130, 208–269.CrossRefGoogle Scholar
  51. 51.
    Yue, Y., Chen, X., Qin, J., & Yao, X. (2009). Colloids and Surfaces B: Biointerfaces, 69, 51–57.CrossRefGoogle Scholar
  52. 52.
    Zhang, M. F., Xu, Z. Q., Ge, Y. S., Jiang, F. L., & Liu, Y. (2012). Journal of Photochemistry and Photobiology. B, 108, 34–43.CrossRefGoogle Scholar
  53. 53.
    Zsila, F., Bika´di, Z., & Simonyi, M. (2002). Biochemical Pharmacology, 64, 1651–1660.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Behafarid Ghalandari
    • 1
    Email author
  • Adeleh Divsalar
    • 2
    Email author
  • Mahbube Eslami-Moghadam
    • 3
  • Ali Akbar Saboury
    • 4
    • 5
  • Thomas Haertlé
    • 6
  • Massoud Amanlou
    • 7
  • Kazem Parivar
    • 1
  1. 1.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Biological SciencesKharazmi UniversityTehranIran
  3. 3.Chemistry and Chemical Engineering Research Center of IranTehranIran
  4. 4.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  5. 5.Center of Excellence in BiothermodynamicsUniversity of TehranTehranIran
  6. 6.Fonctions et Interactions des Protéines, Biopolymères, Interactions, AssociationsInstitut National de la Recherche AgronomiqueNantesFrance
  7. 7.Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations