Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 2, pp 657–665 | Cite as

Inhibitory Effects of Extract from G. lanceolata on LPS-Induced Production of Nitric Oxide and IL-1β via Down-regulation of MAPK in Macrophages

  • Dong Hwan Kim
  • Mi Eun Kim
  • Jun Sik Lee
Article

Abstracts

Grateloupia lanceolata is a red alga native to coastal areas of East Asia. In this study, extract from G. lanceolata (EGL) was investigated for suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages. EGL was found to have anti-inflammatory properties with the inhibition of nitric oxide (NO), pro-inflammatory cytokine production, and MAPK signaling in LPS-induced RAW 264.7 macrophages. Moreover, treatment of RAW 264.7 macrophage with EGL inhibited LPS-induced IL-1β production in a dose-dependent manner. These inhibitory effects were found with the blockage of p38 mitogen-activated protein kinases (MAPK), extracellular signal regulated kinases 1 and 2 (ERK1/2), and also c-Jun N-terminal kinases 1 and 2 (JNK1/2). These results indicated that anti-inflammatory actions of EGL in RAW 264.7 macrophages involved in the inhibition of LPS-induced p38MAPK/ERK/JNK signaling pathways. In addition, our findings suggest that EGL holds great promise for use in the treatment of various inflammatory diseases.

Keywords

Extract from Grateloupia lanceolata Macrophage Inflammation NO MAPK signaling 

Notes

Conflict of Interest

The authors have no financial conflict of interest.

References

  1. 1.
    Islam, M. N., Ishita, I. J., Jin, S. E., Choi, R. J., Lee, C. M., Kim, Y. S., Jung, H. A., & Choi, J. S. (2013). Food and Chemical Toxicology, 55, 541–548.CrossRefGoogle Scholar
  2. 2.
    Chiu, I. M., Heesters, B. A., Ghasemlou, N., Von Hehn, C. A., Zhao, F., Tran, J., Wainger, B., Strominger, A., Muralidharan, S., Horswill, A. R., Bubeck Wardenburg, J., Hwang, S. W., Carroll, M. C., & Woolf, C. J. (2013). Nature, 501, 52–57.CrossRefGoogle Scholar
  3. 3.
    Tsai, S. Y., Segovia, J. A., Chang, T. H., Morris, I. R., Berton, M. T., Tessier, P. A., Tardif, M. R., Cesaro, A., & Bose, S. (2014). PLoS Pathogens, 10, e1003848.CrossRefGoogle Scholar
  4. 4.
    Grimm, M. J., Vethanayagam, R. R., Almyroudis, N. G., Dennis, C. G., Khan, A. N., D’Auria, A. C., Singel, K. L., Davidson, B. A., Knight, P. R., Blackwell, T. S., Hohl, T. M., Mansour, M. K., Vyas, J. M., Rohm, M., Urban, C. F., Kelkka, T., Holmdahl, R., & Segal, B. H. (2013). Journal of Immunology, 190, 4175–4184.CrossRefGoogle Scholar
  5. 5.
    Magalhaes, E. S., Mourao-Sa, D. S., Vieira-de-Abreu, A., Figueiredo, R. T., Pires, A. L., Farias-Filho, F. A., Fonseca, B. P., Viola, J. P., Metz, C., Martins, M. A., Castro-Faria-Neto, H. C., Bozza, P. T., & Bozza, M. T. (2007). European Journal of Immunology, 37, 1097–1106.CrossRefGoogle Scholar
  6. 6.
    Rim, H. K., Cho, W., Sung, S. H., & Lee, K. T. (2012). Journal of Pharmacology and Experimental Therapeutics, 342, 654–664.CrossRefGoogle Scholar
  7. 7.
    Viackova, D., Pekarova, M., Crhak, T., Bucsaiova, M., Matiasovic, J., Lojek, A., & Kubala, L. (2011). Immunobiology, 216, 457–465.CrossRefGoogle Scholar
  8. 8.
    El-Mahmoudy, A., Shimizu, Y., Shiina, T., Matsuyama, H., Nikami, H., & Takewaki, T. (2005). Acta Diabetologica, 42, 23–30.CrossRefGoogle Scholar
  9. 9.
    Momi, S., Monopoli, A., Alberti, P. F., Falcinelli, E., Corazzi, T., Conti, V., Miglietta, D., Ongini, E., Minuz, P., & Gresele, P. (2012). Cardiovascular Research, 94, 428–438.CrossRefGoogle Scholar
  10. 10.
    Chang, S. Y., Kim, D. B., Ryu, G. R., Ko, S. H., Jeong, I. K., Ahn, Y. B., Jo, Y. H., & Kim, M. J. (2013). Journal of Cellular Biochemistry, 114, 844–853.CrossRefGoogle Scholar
  11. 11.
    Chan, E. D., & Riches, D. W. (2001). American Journal of Physiology. Cell Physiology, 280, C441–C450.Google Scholar
  12. 12.
    Zhang, Y., Leung, D. Y., Richers, B. N., Liu, Y., Remigio, L. K., Riches, D. W., & Goleva, E. (2012). Journal of Immunology, 188, 2127–2135.CrossRefGoogle Scholar
  13. 13.
    Morimoto, Y., Kikuchi, K., Ito, T., Tokuda, M., Matsuyama, T., Noma, S., Hashiguchi, T., Torii, M., Maruyama, I., & Kawahara, K. (2009). Biochemical and Biophysical Research Communications, 389, 90–94.CrossRefGoogle Scholar
  14. 14.
    Kwon, O. K., Ahn, K. S., Park, J. W., Jang, H. Y., Joung, H., Lee, H. K., & Oh, S. R. (2012). Inflammation, 35, 535–544.CrossRefGoogle Scholar
  15. 15.
    Santos, S. D., Cahu, T. B., Firmino, G. O., de Castro, C. C., Carvalho, L. B., Jr., Bezerra, R. S., & Filho, J. L. (2012). Journal of Food Science, 77, H141–H146.CrossRefGoogle Scholar
  16. 16.
    Murata, T., Kohno, S., Ito, C., Itoigawa, M., Sugiura, A., Hikita, K., & Kaneda, N. (2013). Journal of Pharmacology and Pharmacotherapeutics, 65, 1204–1213.CrossRefGoogle Scholar
  17. 17.
    Nairz, M., Schleicher, U., Schroll, A., Sonnweber, T., Theurl, I., Ludwiczek, S., Talasz, H., Brandacher, G., Moser, P. L., Muckenthaler, M. U., Fang, F. C., Bogdan, C., & Weiss, G. (2013). The Journal of Experimental Medicine, 210, 855–873.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biology, Immunology Research Laboratory, BK21-Plus Research Team for Bioactive Control Technology, College of Natural SciencesChosun UniversityGwangjuRepublic of Korea
  2. 2.Recobio Company, Business Incubator CenterChosun UniversityGwangjuRepublic of Korea

Personalised recommendations