Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 3, pp 1281–1293 | Cite as

The Effect of Heavy Metal-Induced Oxidative Stress on the Enzymes in White Rot Fungus Phanerochaete chrysosporium

  • Qihua Zhang
  • Guangming Zeng
  • Guiqiu Chen
  • Min Yan
  • Anwei Chen
  • Jianjian Du
  • Jian Huang
  • Bin Yi
  • Ying Zhou
  • Xiaoxiao He
  • Yan He
Article

Abstract

Prevalence of heavy metals in the living environment causes chemical stress and reactive oxygen species (ROS) formation in Phanerochaete chrysosporium (P. chrysosporium). However, the mechanisms involved in ROS defense are still under investigation. In the present study, we evaluated the effect of lead- and cadmium-induced oxidative stress on the activities of catalase (CAT), peroxidase (POD), lignin peroxidase (LiP), and manganese peroxidase (MnP). A time-dependent change in all enzyme activities was observed following exposure to 50 μM cadmium and 25 μM lead. The lowest values were recorded at 4 h after exposure. Both cadmium and lead inhibited CAT and POD. The cytochrome P450 (CYP450) levels increased under 50–100 μM cadmium or lead exposure and decreased when heavy metal concentration was under 50 μM; this suggested that ROS is not the only factor that alters the CYP450 levels. The cadmium removal rate in the sample containing 900 μM taxifolin (inhibitor of CYP450) and 100 μM cadmium was reduced to 12.34 %, 9.73 % lower than that of 100 μM cadmium-induced sample, indicating CYP450 may play an indirect but key role in the process of clearance of heavy metals. The pH of the substrate solution decreased steadily during the incubation process.

Keywords

Phanerochaete chrysosporium Heavy metal Reactive oxygen species Antioxidant defense system Cytochrome P450 

Notes

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (51039001, 51178171), the Program for New Century Excellent Talents in University (NCET-10-0361), and the Research Fund for the Doctoral Program of Higher Education of China (20100161110012).

References

  1. 1.
    Baldrian, P. (2003). Enzyme and Microbial Technology, 32, 78–91.CrossRefGoogle Scholar
  2. 2.
    Zeng, G., Chen, M., & Zeng, Z. (2013). Nature, 499, 154–154.CrossRefGoogle Scholar
  3. 3.
    Ray, S., & Peters, C. A. (2008). Chemosphere, 71, 474–483.CrossRefGoogle Scholar
  4. 4.
    Valko, M., Morris, H., & Cronin, M. (2005). Current Medicinal Chemistry, 12, 1161–1208.CrossRefGoogle Scholar
  5. 5.
    Bokara, K. K., Brown, E., McCormick, R., Yallapragada, P. R., Rajanna, S., & Bettaiya, R. (2008). Biometals, 21, 9–16.CrossRefGoogle Scholar
  6. 6.
    Bott, C., Duncan, A., & Love, N. (2000). Water Science and Technology, 43, 123–130.Google Scholar
  7. 7.
    Hazen, T. C., & Stahl, D. A. (2006). Current Opinion in Biotechnology, 17, 285–290.CrossRefGoogle Scholar
  8. 8.
    Kirk, T. K., Schultz, E., Connors, W., Lorenz, L., & Zeikus, J. (1978). Archives of Microbiology, 117, 277–285.CrossRefGoogle Scholar
  9. 9.
    Rogalski, J., Szczodrak, J., & Janusz, G. (2006). Bioresource Technology, 97, 469–476.CrossRefGoogle Scholar
  10. 10.
    Frederick, S. A. (1992). Applied and Environmental Microbiology, 58, 3110–3116.Google Scholar
  11. 11.
    Aebi, H. (1984). Methods in Enzymology, 105, 121–126.CrossRefGoogle Scholar
  12. 12.
    Zeng, G. M., Chen, A. W., Chen, G. Q., Hu, X. J., Guan, S., Shang, C., Lu, L. H., & Zou, Z. J. (2012). Environmental Science & Technology, 46, 7818–7825.CrossRefGoogle Scholar
  13. 13.
    Zhao, S., Shi, G., & Dong, X. (2002). China agriculture. Beijing: Technology Press.Google Scholar
  14. 14.
    Schenkman, J. B., & Jansson, I. (2006). Methods in Molecular Biology, 320, 11–18.Google Scholar
  15. 15.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  16. 16.
    Omura, T., & Sato, R. (1964). Journal of Biological Chemistry, 239, 2370–2378.Google Scholar
  17. 17.
    Chen, A., Zeng, G., Chen, G., Fan, J., Zou, Z., Li, H., Hu, X., & Long, F. (2011). Applied Microbiology and Biotechnology, 91, 811–821.CrossRefGoogle Scholar
  18. 18.
    Chen, G. Q., Zou, Z. J., Zeng, G. M., Yan, M., Fan, J. Q., Chen, A. W., Yang, F., Zhang, W. J., & Wang, L. (2011). Chemosphere, 83, 1201–1207.CrossRefGoogle Scholar
  19. 19.
    Yetis, U., Dolek, A., Dilek, F. B., & Ozcengiz, G. (2000). Water Research, 34, 4090–4100.CrossRefGoogle Scholar
  20. 20.
    Saglam, A., Yalcinkaya, Y., Denizli, A., Arica, M., Genc, Ö., & Bektas, S. (2002). Microchemical Journal, 71, 73–81.CrossRefGoogle Scholar
  21. 21.
    Jarosz-Wilkolazka, A., & Gadd, G. M. (2003). Chemosphere, 52, 541–547.CrossRefGoogle Scholar
  22. 22.
    Freese, E., Sheu, C. W., & Galliers, E. (1973). Nature, 241, 321–325.CrossRefGoogle Scholar
  23. 23.
    Thevelein, J. M. (1994). Yeast, 10, 1753–1790.CrossRefGoogle Scholar
  24. 24.
    Çetinkaya Dönmez, G., Aksu, Z., Öztürk, A., & Kutsal, T. (1999). Process Biochemistry, 34, 885–892.CrossRefGoogle Scholar
  25. 25.
    Matheickal, J. T., Yu, Q., & Woodburn, G. M. (1999). Water Research, 33, 335–342.CrossRefGoogle Scholar
  26. 26.
    Hernández, J. A., & Almansa, M. S. (2002). Physiologia Plantarum, 115, 251–257.CrossRefGoogle Scholar
  27. 27.
    Sakamoto, T., Yao, Y., Hida, Y., Honda, Y., Watanabe, T., Hashigaya, W., Suzuki, K., & Irie, T. (2012). Applied Microbiology and Biotechnology Express, 2, 1–9.Google Scholar
  28. 28.
    Li, D., Alic, M., Brown, J. A., & Gold, M. H. (1995). Applied and Environmental Microbiology, 61, 341–345.Google Scholar
  29. 29.
    Belinky, P. A., Flikshtein, N., Lechenko, S., Gepstein, S., & Dosoretz, C. G. (2003). Applied and Environmental Microbiology, 69, 6500–6506.CrossRefGoogle Scholar
  30. 30.
    Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Current Topics in Medicinal Chemistry, 1, 529–539.CrossRefGoogle Scholar
  31. 31.
    Stohs, S. J., Bagchi, D., Hassoun, E., & Bagchi, M. (1999). Journal of Environmental Pathology, Toxicology and Oncology: Official Organ of the International Society for Environmental Toxicology and Cancer, 19, 201–213.Google Scholar
  32. 32.
    Matityahu, A., Hadar, Y., & Belinky, P. A. (2010). Enzyme and Microbial Technology, 47, 59–63.CrossRefGoogle Scholar
  33. 33.
    Presnell, S. R., & Cohen, F. E. (1989). Proceedings of the National Academy of Sciences, 86, 6592–6596.CrossRefGoogle Scholar
  34. 34.
    Wariishi, H., Akileswaran, L., & Gold, M. H. (1988). Biochemistry, 27, 5365–5370.CrossRefGoogle Scholar
  35. 35.
    Reddy, G. V. B., & Gold, M. H. (2000). Microbiology, 146, 405–413.Google Scholar
  36. 36.
    Timofeevski, S. L., Nie, G., Reading, N. S., & Aust, S. D. (2000). Archives of Biochemistry and Biophysics, 373, 147–153.CrossRefGoogle Scholar
  37. 37.
    Elbekai, R. H., & El-Kadi, A. O. (2005). Free Radical Biology and Medicine, 39, 1499–1511.CrossRefGoogle Scholar
  38. 38.
    Kim, J. S., Ahn, T., Yim, S. K., & Yun, C. H. (2002). Biochemistry, 41, 9438–9447.CrossRefGoogle Scholar
  39. 39.
    Sugiyama, M. (1992). Free Radical Biology and Medicine, 12, 397–407.CrossRefGoogle Scholar
  40. 40.
    Moreira, E. G., Rosa, G. J. D. M., Barros, S. B. M., Vassilieff, V. S., & Vassillieff, I. (2001). Toxicology, 169, 145–151.CrossRefGoogle Scholar
  41. 41.
    Sen, A., & Semiz, A. (2007). Ecotoxicology and Environmental Safety, 68, 405–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qihua Zhang
    • 1
    • 2
  • Guangming Zeng
    • 1
    • 2
  • Guiqiu Chen
    • 1
    • 2
  • Min Yan
    • 1
    • 2
  • Anwei Chen
    • 1
    • 2
  • Jianjian Du
    • 1
    • 2
  • Jian Huang
    • 1
    • 2
  • Bin Yi
    • 1
    • 2
  • Ying Zhou
    • 1
    • 2
  • Xiaoxiao He
    • 1
    • 2
  • Yan He
    • 1
    • 2
  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Environmental Biology and Pollution Control, Ministry of EducationHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations