Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 1, pp 1–15 | Cite as

Microwave-Assisted Extraction of Phycobiliproteins from Porphyridium purpureum

  • Camille Juin
  • Jean-René Chérouvrier
  • Valérie Thiéry
  • Anne-Laure Gagez
  • Jean-Baptiste Bérard
  • Nicolas Joguet
  • Raymond Kaas
  • Jean-Paul Cadoret
  • Laurent PicotEmail author
Article

Abstract

In the present study, microwave-assisted extraction was first employed to extract the phycobiliproteins of Porphyridium purpureum (Pp). Freeze-dried Pp cells were subjected to microwave-assisted extraction (MAE) to extract phycoerythin (PE), phycocyanin (PC), and allophycocyanin (APC). MAE combined reproducibility and high extraction yields and allowed a 180- to 1,080-fold reduction of the extraction time compared to a conventional soaking process. The maximal PE extraction yield was obtained after 10-s MAE at 40 °C, and PE was thermally damaged at temperatures higher than 40 °C. In contrast, a flash irradiation for 10 s at 100 °C was the best process to efficiently extract PC and APC, as it combined a high temperature necessary to extract them from the thylakoid membrane to a short exposure to thermal denaturation. The extraction order of the three phycobiliproteins was coherent with the structure of Pp phycobilisomes. Moreover, the absorption and fluorescence properties of MAE extracted phycobiliproteins were stable for several months after the microwave treatment. Scanning electron microscopy indicated that MAE at 100 °C induced major changes in the Pp cell morphology, including fusion of the exopolysaccharidic cell walls and cytoplasmic membranes of adjacent cells. As a conclusion, MAE is a fast and high yield process efficient to extract and pre-purify phycobiliproteins, even from microalgae containing a thick exopolysaccharidic cell wall.

Keywords

Allophycocyanin MAE Microalgae Microwave Phycobiliprotein Phycocyanin Phycoerythrin Porphyridium Thylakoid 

Notes

Acknowledgments

This research was financially supported by the French cancer league (Comité 17 de la Ligue Nationale contre le Cancer), European FEDER fund no. 34755-2011 (ALG post-doctoral fellowship), and CPER “Contrats de Projet Etat-Région: Poitou-Charentes” funds (project “Extraction of anticancer pigments from marine microalgae”). We are grateful to the Poitou-Charentes region for CJ’s PhD grant. We also thank the “Cancéropôle Grand Ouest, axe Valorisation des produits de la mer en cancérologie” and Dr. Hélène Montanié, Dr. Isabelle Lanneluc, and Dr. Matthieu Garnier for scientific assistance.

References

  1. 1.
    Roy, S., Llewellyn, C., Skartstad Egeland, E., & Johnsen, G. (Eds.) (2011). Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge, Cambridge University Press.Google Scholar
  2. 2.
    Redlinger, T., & Gantt, E. (1981). Phycobilisome structure of Porphyridium cruentum: polypeptide composition. Plant Physiology, 68(6), 1375–9.Google Scholar
  3. 3.
    Sidler, W. (1994). Phycobilisome and phycobiliprotein structures. In D. Bryant (Ed.), The molecular biology of cyanobacteria (pp. 139–216). Netherlands: Springer.CrossRefGoogle Scholar
  4. 4.
    Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Chidambara Murthy, K. N., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science & Technology, 16(9), 389–406. doi: 10.1016/j.tifs.2005.02.006.CrossRefGoogle Scholar
  5. 5.
    Kuddus, M., Singh, P., Thomas, G., & Al-Hazimi, A. (2013). Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Research International, 2013, 742859. doi: 10.1155/2013/742859.CrossRefGoogle Scholar
  6. 6.
    Benedetti, S., Benvenuti, F., Scoglio, S., & Canestrari, F. (2010). Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. Journal of Medicinal Food, 13(1), 223–227. doi: 10.1089/jmf.2008.0257.CrossRefGoogle Scholar
  7. 7.
    S. Jeffrey, R. Mantoura, & S. Wright (Eds.) (1997). Phytoplankton pigments in oceanography: guidelines to modern methods. Paris, UNESCO.Google Scholar
  8. 8.
    Eriksen, N. T. (2008). Production of phycocyanin–a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. doi: 10.1007/s00253-008-1542-y.CrossRefGoogle Scholar
  9. 9.
    Thangam, R., Suresh, V., Asenath Princy, W., Rajkumar, M., SenthilKumar, N., Gunasekaran, P., Kannan, S. (2013). C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest. Food Chemistry, 140(1), 262–272.Google Scholar
  10. 10.
    Gantar, M., Dhandayuthapani, S., & Rathinavelu, A. (2012). Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. Journal of Medicinal Food, 15(12), 1091–1095. doi: 10.1089/jmf.2012.0123.CrossRefGoogle Scholar
  11. 11.
    Wu, L.-C., Lin, Y.-Y., Yang, S.-Y., Weng, Y.-T., & Tsai, Y.-T. (2011). Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways. Journal of Biomedical Science, 18, 74. doi: 10.1186/1423-0127-18-74.CrossRefGoogle Scholar
  12. 12.
    Nishanth, R. P., Ramakrishna, B. S., Jyotsna, R. G., Roy, K. R., Reddy, G. V., Reddy, P. K., & Reddanna, P. (2010). C-Phycocyanin inhibits MDR1 through reactive oxygen species and cyclooxygenase-2 mediated pathways in human hepatocellular carcinoma cell line. European Journal of Pharmacology, 649(1–3), 74–83. doi: 10.1016/j.ejphar.2010.09.011.CrossRefGoogle Scholar
  13. 13.
    Pardhasaradhi, B. V. V, Ali, A. M., Kumari, A. L., Reddanna, P., & Khar, A. (2003). Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Molecular Cancer Therapeutics, 2(11), 1165–70.Google Scholar
  14. 14.
    Dumay, J., Clément, N., Morançais, M., & Fleurence, J. (2013). Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresource Technology, 131, 21–27.Google Scholar
  15. 15.
    Sørensen, L., Hantke, A., & Eriksen, N. T. (2013). Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. Journal of the Science of Food and Agriculture, 93(12), 2933–2938. doi: 10.1002/jsfa.6116.CrossRefGoogle Scholar
  16. 16.
    Patil, G., & Raghavarao, K. S. M. S. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156–164.Google Scholar
  17. 17.
    Ramos, A., Acién, F. G., Fernández-Sevilla, J. M., González, C. V., & Bermejo, R. (2011). Development of a process for large-scale purification of C-phycocyanin from Synechocystis aquatilis using expanded bed adsorption chromatography. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 879(7–8), 511–519. doi: 10.1016/j.jchromb.2011.01.013.CrossRefGoogle Scholar
  18. 18.
    Bermejo, R., Acién, F. G., Ibáñez, M. J., Fernández, J. M., Molina, E., & Alvarez-Pez, J. M. (2003). Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 790(1–2), 317–25.Google Scholar
  19. 19.
    Soni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188–194. doi: 10.1016/j.biortech.2006.11.010.CrossRefGoogle Scholar
  20. 20.
    Moraes, C. C., & Kalil, S. J. (2009). Strategy for a protein purification design using C-phycocyanin extract. Bioresource Technology, 100(21), 5312–5317. doi: 10.1016/j.biortech.2009.05.026.CrossRefGoogle Scholar
  21. 21.
    Pasquet, V., Chérouvrier, J.-R., Farhat, F., Thiéry, V., Piot, J.-M., Bérard, J.-B., & Picot, L. (2011). Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochemistry, 46(1), 59–67. doi: 10.1016/j.procbio.2010.07.009.CrossRefGoogle Scholar
  22. 22.
    Choi, S.-K., Kim, J.-H., Park, Y.-S., Kim, Y.-J., & Chang, H.-I. (2007). An efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous. Journal of Microbiology and Biotechnology, 17(5), 847–52.Google Scholar
  23. 23.
    Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667–4675. doi: 10.1021/jf400819p.CrossRefGoogle Scholar
  24. 24.
    Destandau, E., Michel, T., & Elfakir, C. (2013). Microwave-assisted extraction. In: M. A. Rostagno & J. M. Prado (Eds.) Natural product extraction: principles and applications (pp. 157–195). London, RSC Publishing.Google Scholar
  25. 25.
    Mandal (2007). Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews 7–18Google Scholar
  26. 26.
    Shin, S., Lee, A., Lee, S., Lee, K., Kwon, J., Yoon, M. Y., & Kim, J. (2010). Microwave-assisted extraction of human hair proteins. Analytical Biochemistry, 407(2), 281–283. doi: 10.1016/j.ab.2010.08.021.CrossRefGoogle Scholar
  27. 27.
    Moreira, M. M., Morais, S., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2012). A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 403(4), 1019–1029. doi: 10.1007/s00216-011-5703-y.CrossRefGoogle Scholar
  28. 28.
    Wang, J.-X., Xiao, X.-H., & Li, G.-K. (2008). Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. Journal of Chromatography. A, 1198–1199, 45–53. doi: 10.1016/j.chroma.2008.05.045.CrossRefGoogle Scholar
  29. 29.
    Li, D.-C., & Jiang, J.-G. (2010). Optimization of the microwave-assisted extraction conditions of tea polyphenols from green tea. International Journal of Food Sciences and Nutrition, 61(8), 837–845. doi: 10.3109/09637486.2010.489508.CrossRefGoogle Scholar
  30. 30.
    Delazar, A., Nahar, L., Hamedeyazdan, S., & Sarker, S. D. (2012). Microwave-assisted extraction in natural products isolation. Methods in Molecular Biology (Clifton, N.J.), 864, 89–115. doi: 10.1007/978-1-61779-624-1_5.CrossRefGoogle Scholar
  31. 31.
    Orio, L., Cravotto, G., Binello, A., Pignata, G., Nicola, S., & Chemat, F. (2012). Hydrodistillation and in situ microwave-generated hydrodistillation of fresh and dried mint leaves: a comparison study. Journal of the Science of Food and Agriculture, 92(15), 3085–3090. doi: 10.1002/jsfa.5730.CrossRefGoogle Scholar
  32. 32.
    Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2009). Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni. Journal of Separation Science, 32(4), 613–622. doi: 10.1002/jssc.200800552.CrossRefGoogle Scholar
  33. 33.
    Jahn, W., Steinbiss, J., & Zetsche, K. (1984). Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta, 161(6), 536–539. doi: 10.1007/BF00407086.CrossRefGoogle Scholar
  34. 34.
    Patel, A. K., Laroche, C., Marcati, A., Ursu, A. V., Jubeau, S., Marchal, L., & Michaud, P. (2013). Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresource Technology, 145, 345–350. doi: 10.1016/j.biortech.2012.12.038.CrossRefGoogle Scholar
  35. 35.
    Serive, B., Kaas, R., Bérard, J.-B., Pasquet, V., Picot, L., & Cadoret, J.-P. (2012). Selection and optimisation of a method for efficient metabolites extraction from microalgae. Bioresource Technology, 124, 311–320. doi: 10.1016/j.biortech.2012.07.105.CrossRefGoogle Scholar
  36. 36.
    Walne, P. (1966). Experiments in the large-scale culture of the larvae of Ostrea edulis (L.). In: Fisheries investigations series II (pp. 53). London: Her Majesty’s stationery office.Google Scholar
  37. 37.
    Munier, M., Jubeau, S., Wijaya, A., Morançais, M., Dumay, J., Marchal, L., Fleurence, J. (2013). Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chemistry, 400–407.Google Scholar
  38. 38.
    Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419–35.Google Scholar
  39. 39.
    Bryant, D. A., Guglielmi, G., Marsac, N. T., Castets, A.-M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. doi: 10.1007/BF00446810.CrossRefGoogle Scholar
  40. 40.
    Bermejo Román, R., Alvárez-Pez, J. M., Acién Fernández, F. G., & Molina Grima, E. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93(1), 73–85.Google Scholar
  41. 41.
    Ruiz-Ruiz, F., Benavides, J., & Rito-Palomares, M. (2013). Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: practical experiences. Process Biochemistry, 48(4), 738–745. doi: 10.1016/j.procbio.2013.02.010.CrossRefGoogle Scholar
  42. 42.
    Benavides, J., & Rito-Palomares, M. (2005). Potential aqueous two-phase processes for the primary recovery of colored protein from microbial origin. Engineering in Life Sciences, 5(3), 259–266. doi: 10.1002/elsc.200420073.CrossRefGoogle Scholar
  43. 43.
    Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G., & Chemat, F. (2014). Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chemistry, 150, 193–198. doi: 10.1016/j.foodchem.2013.10.139.CrossRefGoogle Scholar
  44. 44.
    Bermejo, R., Felipe, M. A., Talavera, E. M., & Alvarez-Pez, J. M. (2006). Expanded bed adsorption chromatography for recovery of phycocyanins from the microalga spirulina platensis. Chromatographia, 63(1–2), 59–66. doi: 10.1365/s10337-005-0702-9.CrossRefGoogle Scholar
  45. 45.
    González-Ramírez, E., Andújar-Sánchez, M., Ortiz-Salmerón, E., Bacarizo, J., Cuadri, C., Mazzuca-Sobczuk, T., & Martínez-Rodríguez, S. (2014). Thermal and pH stability of the B-phycoerythrin from the red algae Porphyridium cruentum. Food Biophysics, 9(2), 184–192. doi: 10.1007/s11483-014-9331-x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Camille Juin
    • 1
  • Jean-René Chérouvrier
    • 1
  • Valérie Thiéry
    • 1
  • Anne-Laure Gagez
    • 1
  • Jean-Baptiste Bérard
    • 2
  • Nicolas Joguet
    • 1
  • Raymond Kaas
    • 2
  • Jean-Paul Cadoret
    • 2
  • Laurent Picot
    • 1
    Email author
  1. 1.UMRi CNRS 7266 LIENSs University of La RochelleLa RochelleFrance
  2. 2.IFREMER Laboratoire BRM/PBANantesFrance

Personalised recommendations