Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 8, pp 2725–2740 | Cite as

Newly Antibacterial and Antiadhesive Lipopeptide Biosurfactant Secreted by a Probiotic Strain, Propionibacterium Freudenreichii

  • Hamidreza Hajfarajollah
  • Babak Mokhtarani
  • Kambiz Akbari Noghabi
Article

Abstract

A lipopeptide biosurfactant production from a probiotic type strain of Propionibacterium freudenreichii subsp. freudenreichii is being reported here for the first time. This biosurfactant is able to reduce the surface tension of water from 72 to 38 mN/m with an increase of the biosurfactant concentration up to critical micelle concentration value of 1.59 mg/ml. The production of the biosurfactant was found to be much higher in medium containing sunflower oil compared to the glucose-containing medium. The maximum emulsifying activity (E24 = 72 %) was attained with used frying sunflower oil, while kerosene and starch had the lowest emulsifying activity. Biosurfactant production seems to be parallel to cell growth. The produced biosurfactant was relatively thermo-stable and no appreciable changes in biosurfactant activity occurred at temperature ranges of 25–85 °C. The analysis of the extracted biosurfactant by thin layer chromatography, infrared spectroscopy, and 1H and 13CNMR spectroscopy revealed the chemical nature of the biosurfactant as lipopeptide. Produced lipopeptide was evaluated for its antimicrobial and antiadhesive activity and showed significant antimicrobial and antiadhesive action against a wide range of pathogenic bacteria and fungi. A total growth inhibition was observed over Rhodococcus erythropolis, while the best result of antiadhesion was obtained against Pseudomonas aeruginosa.

Keyword

Propionibacterium freudenreichii Lipopeptide Antimicrobial activity Antiadhesive activity 

Supplementary material

12010_2014_1221_MOESM1_ESM.pdf (220 kb)
ESM 1 (PDF 219 kb)

References

  1. 1.
    Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., et al. (2009). Process Biochemistry, 44, 302–308.CrossRefGoogle Scholar
  2. 2.
    Sharafi, H., Abdoli, M., Hajfarajollah, H., Samie, N., Alidoust, L., Abbasi, H., et al. (2014). Applied Biochemistry and Biotechnology, 173(5), 1236-1249.CrossRefGoogle Scholar
  3. 3.
    Ghojavand, H., Vahabzadeh, F., & Khodabandeh Shahraki, A. (2012). Journal Petro. Science Engineer, 81, 24–30.CrossRefGoogle Scholar
  4. 4.
    Saeki, H., Sasaki, M., Komatsu, K., Miura, A., & Matsuda, H. (2009). Bioresource Technology, 100, 572–577.CrossRefGoogle Scholar
  5. 5.
    Mulligan, C. N. (2005). Environmental Pollution, 133, 183–198.CrossRefGoogle Scholar
  6. 6.
    Juwarkar, A. A., Nair, A., Dubey, K. V., Singh, S. K., & Devotta, S. (2007). Chemosphere, 68, 1996–2002.CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Xu, D., Zhu, C., Lunda, T., & Scherr, K. E. (2012). Chemical Engineering Journal, 209, 138–146.CrossRefGoogle Scholar
  8. 8.
    Sheperd, R., Rockey, J., Sutherland, I., & Roller, S. (1995). Journal of Biotechnology, 40, 207–217.CrossRefGoogle Scholar
  9. 9.
    Gudina, E. J., Teixeira, J. A., & Rodrigues, L. R. (2010). Colloid Surf. B: Biointerface, 76, 298–304.CrossRefGoogle Scholar
  10. 10.
    Piao, Y., Kawaraichi, N., Asegawa, R., Kiatpan, P., Ono, H., Yamashita, M., et al. (2004). Journal of Bioscience and Bioengineering, 97(5), 310–316.CrossRefGoogle Scholar
  11. 11.
    Hajfarajollah, H., Mokhtarani, B., Sharifi, A., Mirzaei, M., & Afaghi, A. (2014). RSC Advances, 4, 13153–13160.CrossRefGoogle Scholar
  12. 12.
    Hajfarajollah, H., Mokhtarani, B., Mortaheb, H., & Afaghi, A. (2014). Food Sciene Technology. doi: 10.1007/s13197-014-1383-x.Google Scholar
  13. 13.
    Sen, R., & Swaminathan, T. (1997). Applied Microbiology and Biotechnology, 47, 358–363.CrossRefGoogle Scholar
  14. 14.
    Khoshdast, H., Abbasi, H., Sam, A., & Noghabi, K. A. (2012). Biochemical Engineering Journal, 60, 127–134.CrossRefGoogle Scholar
  15. 15.
    Morikawa, M., Hirata, Y., & Imanaka, T. (2000). Biochemistry Biophysical Acta, 488, 211–218.CrossRefGoogle Scholar
  16. 16.
    Cooper, D. G., & Goldenberg, B. G. (1987). Applied and Environmental Microbiology, 53(2), 224–229.Google Scholar
  17. 17.
    Das, P., Mukherjee, S., & Sen, R. (2009). Bioresource Technology, 100, 1015–1019.CrossRefGoogle Scholar
  18. 18.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  19. 19.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  20. 20.
    Folch, J. M., Lees, M., & Stanly, H. S. (1956). Journal of Biological Chemistry, 226, 497–509.Google Scholar
  21. 21.
    Nitschke, M., & Costa, S. G. V. A. O. (2007). Trends Food Sci. Technology, 18, 252–259.Google Scholar
  22. 22.
    Joshi, S., Bharucha, C., & Desai, A. J. (2008). Bioresource Technology, 99, 4603–4608.CrossRefGoogle Scholar
  23. 23.
    Arima, K., Kakinuma, A., & Tamura, G. (1968). Biophysics Res. Community, 31(3), 488–494.CrossRefGoogle Scholar
  24. 24.
    Jain, R. M., Mody, K., Mishra, A., & Jha, B. (2012). Carbohydrate Polymers, 89, 1110–1116.CrossRefGoogle Scholar
  25. 25.
    Ramani, K., Jain, S. C., Mandal, A. B., & Sekaran, G. (2012). Colloid Surf. B: Biointerface, 97, 254–263.CrossRefGoogle Scholar
  26. 26.
    Rodrigues, L. R., Teixeira, J. A., Van der Mei, H. C., & Oliveira, R. (2006). Colloid Surf B: Biointerface, 53, 105–112.CrossRefGoogle Scholar
  27. 27.
    Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Bioresource Technology, 102, 3366–3372.CrossRefGoogle Scholar
  28. 28.
    Busscher, H. J., Neu, T., & Van der Mei, H. C. (1994). Applied Microbiology and Biotechnology, 41, 4–7.CrossRefGoogle Scholar
  29. 29.
    Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 6(1), 47–64.Google Scholar
  30. 30.
    Wahab, K. A., Mohammad Shahedur, R., & Takashi, A. (2009). Journal Environmental Science Supplement., 21, 33–35.Google Scholar
  31. 31.
    Suzuki, T., Tanaka, K., Matsubara, I., & Kinoshita, S. (1969). Agriculture Biological Chemistry, 33(11), 1619–1627.CrossRefGoogle Scholar
  32. 32.
    Makula, R., & Finnerty, W. R. (1970). Journal of Bacteriology, 103, 348–355.Google Scholar
  33. 33.
    Makula, M. R., & Finnerty, W. R. (1972). Journal of Bacteriology, 112(7), 398–407.Google Scholar
  34. 34.
    Suzuki, T., Tanaka, H., & Itoh, S. (1974). Agriculture Biological Chemistry, 38(3), 557–563.CrossRefGoogle Scholar
  35. 35.
    Zhang, A., & Yang, S. (2009). Biotechnology and Bioengineering, 104, 766–773.Google Scholar
  36. 36.
    Hugenschmidt, S., Schwenninger, S. M., Gnehm, N., & Lacroix, C. (2010). International Dairy Journal, 20, 852–857.CrossRefGoogle Scholar
  37. 37.
    Gardner, N., & Champagne, C. P. (2005). Journal of Applied Microbiology, 99, 1236–1245.CrossRefGoogle Scholar
  38. 38.
    Miyano, K., Ye, K., & Shimizu, K. (2005). Biochemical Engineering Journal, 6, 207–214.CrossRefGoogle Scholar
  39. 39.
    Qiao, N., & Shao, Z. J. (2010). Appl. Microbiology, 108, 1207–1216.Google Scholar
  40. 40.
    Nitschke, M., & Pastore, G. M. (2004). Applied Biochemistry and Biotechnology, 112, 163–172.CrossRefGoogle Scholar
  41. 41.
    Saravanakumari, P., & Mani, K. (2010). Bioresource Technology, 101, 8851–8854.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hamidreza Hajfarajollah
    • 1
  • Babak Mokhtarani
    • 1
  • Kambiz Akbari Noghabi
    • 2
  1. 1.Chemistry and Chemical Engineering Research Center of IranTehranIran
  2. 2.National Institute of Genetic Engineering and BiotechnologyTehranIran

Personalised recommendations