Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1215–1232 | Cite as

Detergent-Compatible Bacterial Amylases

  • Francois N. Niyonzima
  • Sunil S. MoreEmail author
Article

Abstract

Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

Keywords

Alkaline amylase Detergent compatibility Starchystain Visual examination Reflectance 

References

  1. 1.
    Azad, M. A. K., Bae, J. H., Kim, J. S., Lim, J. K., Song, K. S., Shin, B. S., & Kim, H. R. (2009). New Biotechnology, 26, 143–149.CrossRefGoogle Scholar
  2. 2.
    Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Process Biochemistry, 38, 1599–1616.CrossRefGoogle Scholar
  3. 3.
    Aiyer, P. V. (2005). African Journal of Biotechnology, 4, 1525–1529.Google Scholar
  4. 4.
    Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Biotechnology and Applied Biochemistry, 31, 135–152.CrossRefGoogle Scholar
  5. 5.
    Schallmey, M., Singh, A., & Ward, O. P. (2004). Canadian Journal of Microbiology, 50, 1–17.CrossRefGoogle Scholar
  6. 6.
    Kim, T. U., Gu, B. G., Jeong, J. Y., Byun, S. M., & Shin, Y. C. (1995). Applied and Environmental Microbiology, 61, 3105–3112.Google Scholar
  7. 7.
    Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). Food Technology and Biotechnology, 44, 173–184.Google Scholar
  8. 8.
    Mobini-Dehkordi, M., & Javan, F. A. (2012). Journal of Biology and Today’s World, 1, 39–50.Google Scholar
  9. 9.
    Roy, J. K., Rai, S. K., & Mukherjee, A. K. (2012). International Journal of Biological Macromolecules, 50, 219–229.CrossRefGoogle Scholar
  10. 10.
    Prakash, O., & Jaiswal, N. (2010). Applied Biochemistry and Biotechnology, 160, 2401–1030.CrossRefGoogle Scholar
  11. 11.
    Reddy, N. S., Nimmagadda, A., & Rao, K. R. S. S. (2003). African Journal of Biotechnology, 2, 645–648.CrossRefGoogle Scholar
  12. 12.
    Ito, S., & Horikoshi, K. (2004). Journal of Biological Macromolecules, 4, 3–11.Google Scholar
  13. 13.
    Das, S., Singh, S., Sharma, V., & Soni, M. L. (2011). International Journal of Pharma and Bio Sciences, 2, 486–496.Google Scholar
  14. 14.
    Mojsov, K. (2012). International Journal of Management, IT and Engineering, 2, 583–609.Google Scholar
  15. 15.
    Naidu, M. A., & Saranraj, P. (2013). International Journal of Pharmaceutical and Biological Archives, 4, 274–287.Google Scholar
  16. 16.
    Hasan, F., Shah, A. A., Javed, S., & Hameed, A. (2010). African Journal of Biotechnology, 9, 4836–4844.Google Scholar
  17. 17.
    Niyonzima, F. N., & More, S. (2014). Preparative Biochemistry and Biotechnology. doi: 10.1080/10826068.2014.907183.Google Scholar
  18. 18.
    Arikan, B. (2007). Bioresource Technology, 99, 3071–3076.CrossRefGoogle Scholar
  19. 19.
    Saxena, K. R., Dutt, K., Agarwal, L., & Nayyar, P. (2007). Bioresource Technology, 98, 260–265.CrossRefGoogle Scholar
  20. 20.
    de Carvalho, R. V., Côrrea, T. L. R., da Silva, J. C. M., Mansur, L. R. C. O., & Martins, M. L. L. (2008). Brazilian Journal of Microbiology, 39, 102–107.CrossRefGoogle Scholar
  21. 21.
    Kiran, K. K., & Chandra, T. S. (2008). Applied Microbiology and Biotechnology, 77, 1023–1031.CrossRefGoogle Scholar
  22. 22.
    Ghorbel, R. E., Maktouf, S., Massoud, E. B., Bejar, S., & Chaabouni, S. E. (2009). Applied Biochemestry and Biotechnology, 157, 50–60.CrossRefGoogle Scholar
  23. 23.
    Maalej, H., Hmidet, N., Ghorbel-Bellaaj, O., & Nasri, M. (2013). Biotechnology and Bioprocess Engineering, 18, 878–887.CrossRefGoogle Scholar
  24. 24.
    Roohi, R., Kuddus, M., & Saima, S. (2013). Journalof Biochemical Technology, 4, 636–644.Google Scholar
  25. 25.
    Roy, J. K., & Mukherjee, A. K. (2013). Biochemical Engineering Journal, 77, 220–230.CrossRefGoogle Scholar
  26. 26.
    Chakraborty, S., Khopade, A., Biao, R., Jian, W., Liu, X. Y., Mahadik, K., Chopade, B., Zhang, L., & Kokare, C. (2011). Journal of Molecular Catalysis B: Enzymatic, 68, 52–58.CrossRefGoogle Scholar
  27. 27.
    Chakraborty, S., Raut, G., Khopade, A., Mahadik, K., & Kokare, C. (2012). Indian Journal of Biotechnology, 11, 427–437.Google Scholar
  28. 28.
    Satheeshkumar, G., Chandra, M. S., Mallaiah, K. V., Sreenivasulu, P., & Choi, Y. K. (2010). Biotechnology and Bioprocess Engineering, 15, 1–6.CrossRefGoogle Scholar
  29. 29.
    Shafiei, M., Ziaee, A. A., & Amoozegar, M. A. (2010). Process Biochemistry, 45, 694–699.CrossRefGoogle Scholar
  30. 30.
    Mukherjee, A. K., Borah, M., & Rai, S. K. (2009). Biochemical Engineering Journal, 43, 149–156.CrossRefGoogle Scholar
  31. 31.
    Morkeberg, R., Carlsen, M., & Nielsen, J. (1995). Microbiology, 141, 2449–2454.CrossRefGoogle Scholar
  32. 32.
    Malhotra, R., Noorwez, S. M., & Satyanarayana, T. (2000). Letters in Applied Microbiology, 31, 378–384.CrossRefGoogle Scholar
  33. 33.
    Sohail, M., Ahmad, A., Shahzad, S., & Khan, S. A. (2005). Pakistan Journal of Botany, 37, 155–161.Google Scholar
  34. 34.
    Lin, L. L., Chyau, C. C., & Hsu, W. H. (1998). Biotechnology and Applied Biochemistry, 28, 61–68.Google Scholar
  35. 35.
    Padhiar, J., Das, A., & Bhattacharya, S. (2011). Pakistan Journalof Biological Sciences, 14, 1011–1018.CrossRefGoogle Scholar
  36. 36.
    Lonsane, B. K., Ghildyal, N. P., Budiatman, S., & Ramakrishna, S. V. (1985). Enzyme and Microbial Technology, 7, 258–265.CrossRefGoogle Scholar
  37. 37.
    Kobayashi, T., Hakamada, Y., Hitomi, J., Koike, K., & Ito, S. (1996). Applied Microbiology and Biotechnology, 45, 63–71.CrossRefGoogle Scholar
  38. 38.
    Michelin, M., Silva, T. M., Benassi, V. M., Peixoto-Nogueira, S. C., Moraes, L. A., Leao, J. M., Jorge, J. A., Terenzi, H. F., & Polizeli, M. L. (2010). CarbohydrateResearch, 345, 2348–2353.Google Scholar
  39. 39.
    Fitter, J., Herrmann, R., Dencher, N. A., Blume, A., & Hauss, T. (2001). Biochemistry, 40, 10723–10731.CrossRefGoogle Scholar
  40. 40.
    Simons, J. W., Kosters, H. A., Visschers, R. W., & de Jongh, H. H. (2002). Archives of Biochemistry and Biophysics, 406, 143–152.CrossRefGoogle Scholar
  41. 41.
    Goyal, N., Gupta, J. K., & Soni, S. K. (2005). Enzyme and Microbiol Technology, 37, 723–734.CrossRefGoogle Scholar
  42. 42.
    Lévêque, E., Janecek, S., Haye, B., & Belarbi, A. (2000). Enzyme and Microbial Technology, 26, 3–14.CrossRefGoogle Scholar
  43. 43.
    Sindhu, R., Suprabha, G. N., & Shashidhar, S. (2011). Biotechnology, Bioinformatics and Bioengineering, 1, 25–32.Google Scholar
  44. 44.
    Hmidet, N., Maalej, H., Haddar, A., & Nasri, M. (2010). Applied Biochemistry and Biotechnology, 162, 1018–1030.CrossRefGoogle Scholar
  45. 45.
    Mitidieri, S., Martinelli, A. H. S., Schrank, A., & Vainstein, M. H. (2006). Bioresource Technology, 97, 1217–1224.CrossRefGoogle Scholar
  46. 46.
    Bajpai, D., & Tyagi, V. K. (2007). Journal of Oleo Science, 56, 327–340.CrossRefGoogle Scholar
  47. 47.
    Bano, S., Qader, S. A. U., Aman, A., & Azhar, A. (2009). Indian Journal of Biochemistry and Biophysics, 46, 401–404.Google Scholar
  48. 48.
    Kumari, N., Jain, V., & Malhotra, S. (2013). African Journal of Microbiology Research, 7, 5440–5448.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biology–Chemistry, CEUniversity of RwandaKigaliRwanda
  2. 2.Department of Biochemistry, Center for Post Graduate StudiesJain UniversityBangaloreIndia

Personalised recommendations