Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1393–1402 | Cite as

Impact of Xylan on Synergistic Effects of Xylanases and Cellulases in Enzymatic Hydrolysis of Lignocelluloses

  • Junhua ZhangEmail author
  • Liisa Viikari


Supplementation of xylanase (XYL) has been found to synergistically improve the performance of cellulases (CEL) in the hydrolysis of lignocelluloses. However, the effect of xylan on the synergistic effects of XYL and CEL is still unclear. In this work, the effect of xylan on the synergy between CEL and XYL was investigated. Xylan content in corn stover was generally a good indicator of the degree of the synergism between CEL and XYL. Strongest synergism was observed in the hydrolysis of cellulose in corn stover with the highest xylan contents. A more evident synergistic effect of CEL in xylan hydrolysis was observed in the substrates with low original xylan content. It was also found that the ratio of cellulose to xylan in substrates correlated to the synergism between the two types of enzymes. The results indicated that supplementation of XYL with CEL was most effective in the hydrolysis of corn stover with the highest xylan content. For efficient enzymatic hydrolysis of lignocelluloses, both cellulases and xylanase were important because cellulose and xylan coved each other and these enzymes could improve their performance each other in the hydrolysis of cellulose and xylan in lignocelluloses.


Synergism Xylan Cellulases Xylanase Enzymatic hydrolysis 









Corn stover with high pretreatment severity


Corn stover with low pretreatment severity


Corn stover with medium pretreatment severity


Dry matter




High-performance anion exchange chromatography coupled with pulsed amperometric detection





This work was supported by the Natural Science Foundation of China (project number 31270622) and the 7th Framework Program of the European Commission (HYPE project number 213139). The authors are grateful to Roal Oy (Rajamäki, Finland) and Inbicon (Fredericia, Denmark) for providing the monocomponent enzymes and the pretreated corn stover. Laura Huikko (University of Helsinki, Finland) is thanked for assistance in the HPAEC-PAD analysis.


  1. 1.
    Aspinall, G. O. (1959). Advances in Carbohydrate Chemistry, 14, 429–468.Google Scholar
  2. 2.
    Mosier, N., Wyman, C. E., Dale, B. D., Elander, R. T., Lee, Y. Y., Holtzapple, M., & Ladisch, C. M. (2005). Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  3. 3.
    Yang, B., & Wyman, C. E. (2008). Biofuels, Bioproducts and Biorefining, 2, 26–40.CrossRefGoogle Scholar
  4. 4.
    Kim, T. Y., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47.CrossRefGoogle Scholar
  5. 5.
    Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Journal of Scientific and Industrial Research, 67, 849–864.Google Scholar
  6. 6.
    Grethlein, H. E. (1985). Nature Biotechnology, 3, 155–160.CrossRefGoogle Scholar
  7. 7.
    Yang, B., & Wyman, C. E. (2004). Biotechnology and Bioengineering, 86, 88–95.CrossRefGoogle Scholar
  8. 8.
    García-Aparicio, M. P., Ballesteros, M., Manzanares, P., Ballesteros, I., González, A., & Negro, M. J. (2007). Applied Biochemistry and Biotechnology, 136–140, 353–366.Google Scholar
  9. 9.
    Zhang, J., Siika-aho, M., Tenkanen, M., & Viikari, L. (2011). Biotechnology for Biofuels, 4, 60.CrossRefGoogle Scholar
  10. 10.
    Bura, R., Chandra, R., & Saddler, J. (2009). Biotechnology Progress, 25, 315–322.CrossRefGoogle Scholar
  11. 11.
    Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Bioresource Technology, 98, 2034–2042.CrossRefGoogle Scholar
  12. 12.
    Penttilä, P. A., Várnai, A., Pere, J., Tammelin, T., Salmén, L., Siika-aho, M., Viikari, L., & Serimaa, R. (2013). Bioresource Technology, 129, 135–141.CrossRefGoogle Scholar
  13. 13.
    Zhang, J., Tang, M., & Viikari, L. (2012). Bioresource Technology, 121, 8–12.CrossRefGoogle Scholar
  14. 14.
    Qing, Q., Yang, B., & Wyman, C. E. (2010). Bioresource Technology, 101, 9624–9630.CrossRefGoogle Scholar
  15. 15.
    Zhang, J., & Viikari, L. (2012). Bioresource Technology, 117, 286–291.CrossRefGoogle Scholar
  16. 16.
    Öhgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Bioresource Technology, 98, 2503–2510.CrossRefGoogle Scholar
  17. 17.
    Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., Okunev, O., Gusakov, A., Maximenko, V., Gregg, D., Sinitsyn, A., & Saddler, J. (2005). Enzyme and Microbial Technology, 37, 175–184.CrossRefGoogle Scholar
  18. 18.
    Kumar, R., & Wyman, C. E. (2009). Bioresource Technology, 100, 4203–4213.CrossRefGoogle Scholar
  19. 19.
    Selig, M. J., Knoshaug, E. P., Adney, W. S., Himmel, M. E., & Decker, S. R. (2008). Bioresource Technology, 99(11), 4997–5005.CrossRefGoogle Scholar
  20. 20.
    Várnai, A., Huikko, L., Pere, J., Siiko-aho, M., & Viikari, L. (2011). Bioresource Technology, 102, 9096–9104.CrossRefGoogle Scholar
  21. 21.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Golden, CO: National Renewable Energy Laboratory.Google Scholar
  22. 22.
    Suominen, P., Mäntylä, A., Karhunen, T., Hakola, S., & Nevalainene, H. (1993). Molecular Genetics and Genomics, 241, 523–530.CrossRefGoogle Scholar
  23. 23.
    Leskinen, S., Mäntylä, A., Fagerström, R., Vehmaanperä, J., Lantto, R., Paloheimo, M., & Suominen, P. (2005). Applied Microbiology and Biotechnology, 67, 495–505.CrossRefGoogle Scholar
  24. 24.
    Zhang, J., Siika-aho, M., Puranen, T., Tang, M., Tenkanen, M., & Viikari, L. (2011). Biotechnology for Biofuels, 4, 12.CrossRefGoogle Scholar
  25. 25.
    Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.CrossRefGoogle Scholar
  26. 26.
    Bailey, M. J., & Nevalainen, K. M. H. (1981). Enzyme and Microbial Technology, 3, 153–157.CrossRefGoogle Scholar
  27. 27.
    Poutanen, K., & Puls, J. (1988). Applied Microbiology and Biotechnology, 28, 425–432.CrossRefGoogle Scholar
  28. 28.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.Google Scholar
  29. 29.
    Lowry, O. H., Roseborough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  30. 30.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  31. 31.
    Rantanen, H., Virkki, L., Tuomainen, P., Kabel, M., Schols, H., & Tenkanen, M. (2007). Carbohydrate Research, 68, 350–359.CrossRefGoogle Scholar
  32. 32.
    Wiman, M., Dienes, D., Hansen, M. A. T., van der Meulen, T., Zacchi, G., & Lidén, G. (2012). Bioresource Technology, 126, 208–215.CrossRefGoogle Scholar
  33. 33.
    Lamptey, J., Robinson, C. W., & Moo-Young, M. (1985). Biotechnology Letters, 7, 531–536.CrossRefGoogle Scholar
  34. 34.
    Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hägerdal, B., & Zacchi, G. (2006). Journal of Biotechnology, 126, 488–498.CrossRefGoogle Scholar
  35. 35.
    Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., & Zacchi, G. (2007). Process Biochemistry, 42, 834–839.CrossRefGoogle Scholar
  36. 36.
    Xu, J., Thomsen, M. H., & Thomsen, A. B. (2010). Biomass and Bioenergy, 34, 334–339.CrossRefGoogle Scholar
  37. 37.
    Kumar, L., Arantes, V., Chandra, R., & Saddler, J. (2012). Bioresource Technology, 103, 201–208.CrossRefGoogle Scholar
  38. 38.
    Eklund, R., Galbe, M., & Zacchi, G. (1995). Bioresource Technology, 52, 225–229.CrossRefGoogle Scholar
  39. 39.
    Kumar, R., & Wyman, C. E. (2009). Biotechnology Progress, 25, 302–314.CrossRefGoogle Scholar
  40. 40.
    Selig, M. J., Adney, W. S., Himmel, M. E., & Decker, S. R. (2009). Cellulose, 16, 711–722.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of ForestryNorthwest A&F UniversityYanglingChina
  2. 2.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations