Applied Biochemistry and Biotechnology

, Volume 174, Issue 2, pp 574–586 | Cite as

Microbial Lipid Production from Corn Stover via Mortierella isabellina

Article

Abstract

Microbial lipid is a promising source of oil to produce biofuel if it can be generated from lignocellulosic materials. Mortierella isabellina is a filamentous fungal species featuring high content of oil in its cell biomass. In this work, M. isabellina was studied for lipid production from corn stover. The experimental results showed that M. isabellina could grow on different kinds of carbon sources including xylose and acetate, and the lipid content reached to 35 % at C/N ratio of 20. With dilution, M. isabellina could endure inhibition effects by dilute acid pretreatment of corn stover (0.3 g/L furfural, 1.2 g/L HMF, and 1 g/L 4-hydroxybenozic acid) and the strain formed pellets in the cell cultivations. An integrated process was developed combining the dilute acid pretreatment, cellulase hydrolysis, and cell cultivation for M. isabellina to convert corn stover to oil containing fungal biomass. With 7.5 % pretreated biomass solid loading ratio, the final lipid yield from sugar in pretreated biomass was 40 % and the final lipid concentration of the culture reached to 6.46 g/L.

Keywords

Mortierella isabellina Corn stover Lipid production Acid pretreatment Cellulase Hydrolysate 

References

  1. 1.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, K., Montague, L., Slayton, A. & Lukas, J. (2002). Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, Golden, CO, NREL/TP-510-32438.Google Scholar
  2. 2.
    Andre, A., Diamantopoulou, P., Philippoussis, A., Sarris, D., Komaitis, M., & Papanikolaou, S. (2010). Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Industrial Crops and Products, 31, 407–416.CrossRefGoogle Scholar
  3. 3.
    Bajpai, R., Subramaniam, R., Dufreche, S., & Zappi, M. (2010). Microbial lipids from renewable resources: Production and characterization. Journal Of Industrial Microbiology and Biotechnology, 37, 1271–1287.CrossRefGoogle Scholar
  4. 4.
    Barclay, W., Meager, K., & Abril, J. (1994). Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. Journal of Applied Phycology, 6, 123–129.CrossRefGoogle Scholar
  5. 5.
    Chen, X., Li, Z., Zhang, X., Hu, F., Ryu, D. D. Y., & Bao, J. (2009). Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Applied Biochemistry and Biotechnology, 159, 591–604.CrossRefGoogle Scholar
  6. 6.
    Cheng, Y., Lu, Y., Gao, C., & Wu, Q. (2009). Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy and Fuels, 23, 4166–4173.CrossRefGoogle Scholar
  7. 7.
    J. C., D. P., Immelman, M., Kock, J. L. F., & Kilian, S. G. (1995). Production of gamma-linolenic acid by Mucor circinelloides and Mucor rouxii with acetic acid as carbon substrate. Biotechnological Letters, 17, 933–938.CrossRefGoogle Scholar
  8. 8.
    Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass and Bioenergy, 33, 573–580.CrossRefGoogle Scholar
  9. 9.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.CrossRefGoogle Scholar
  10. 10.
    Ho, N. W. Y., Chen, Z. D., & Brainard, A. P. (1998). Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64, 1852–1859.Google Scholar
  11. 11.
    Hu, B., Xia, C. J., Zhang, J. G., & Zhang, W. D. (2011). A new cultivation method for microbial oil production: Cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnology For Biofuels, 4.Google Scholar
  12. 12.
    Hu, C., Zhao, X., Zhao, J., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100, 4843–4847.CrossRefGoogle Scholar
  13. 13.
    Huang, C., Zong, M., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100, 4535–4538.CrossRefGoogle Scholar
  14. 14.
    Jian Zhang, Z. Z., Wang, X., Wang, N., Wang, W., & Bao, J. (2010). Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnology for Biofuels, 3, 26.CrossRefGoogle Scholar
  15. 15.
    Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24, 815–820.Google Scholar
  16. 16.
    Mathew, A. K., Chaney, K., Crook, M., & Humphries, A. C. (2011). Dilute acid pre-treatment of oilseed rape straw for bioethanol production. Renewable Energy, 36, 2424–2432.CrossRefGoogle Scholar
  17. 17.
    Matthew, T. Carr, J. R. H. (2009). In Biofuels. Wim Soetaert, E. J. V. (ed.), (pp. 9–38).Google Scholar
  18. 18.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  19. 19.
    Ngo, T. T., Phan, A. P. H., Yam, C. F., & Lenhoff, H. M. (1982). Interference in determination of ammonia with the hypochlorite alkaline phenol method of Berthelot. Analytical Chemistry, 54, 46–49.CrossRefGoogle Scholar
  20. 20.
    Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M., & Aggelis, G. (2007). Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology, 109, 1060–1070.CrossRefGoogle Scholar
  21. 21.
    Papanikolaou, S., Sarantou, S., Komaitis, M., & Aggelis, G. (2004). Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology, 97, 867–875.CrossRefGoogle Scholar
  22. 22.
    Peng, X., & Chen, H. (2008). Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresource Technology, 99, 3885–3889.CrossRefGoogle Scholar
  23. 23.
    Peng, X. W., & Chen, H. Z. (2007). Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Annals of Microbiology, 57, 239–242.CrossRefGoogle Scholar
  24. 24.
    Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2004). Use of vegetable oils as IC engine fuels—a review. Renewable Energy, 29, 727–742.CrossRefGoogle Scholar
  25. 25.
    Ratlegde, C. and Hopkins, S. (2006). Lipids from microbial sources. Modifying Lipids for Use in Food, 80-113.Google Scholar
  26. 26.
    Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101, 4744–4753.CrossRefGoogle Scholar
  27. 27.
    Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M. and Hoadley, A. (2010). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2.Google Scholar
  28. 28.
    Venkatesh, K. V. (1997). Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresource Technology, 62, 91–98.CrossRefGoogle Scholar
  29. 29.
    Wang, M., Wang, J. and Tan, J. X. (2011). Lignocellulosic bioethanol: Status and prospects. Energy sources Part A-Recovery utilization and environmental effects, 33, 612-619.Google Scholar
  30. 30.
    Wolfrum, E. J., & Sluiter, A. D. (2009). Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Cellulose, 16, 567–576.CrossRefGoogle Scholar
  31. 31.
    Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.CrossRefGoogle Scholar
  32. 32.
    Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.CrossRefGoogle Scholar
  33. 33.
    Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86, 88–95.CrossRefGoogle Scholar
  34. 34.
    Ye Sun, J. C. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  35. 35.
    Zhang, J. G., & Hu, B. (2012). A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology, 114, 529–535.CrossRefGoogle Scholar
  36. 36.
    Zhao, X., Hu, C., Wu, S., Shen, H. and Zhao, Z. (2010). Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. Journal of Industrial Microbiology and Biotechnology, 1–6.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSaint PaulUSA

Personalised recommendations