Applied Biochemistry and Biotechnology

, Volume 174, Issue 2, pp 751–761 | Cite as

The Prognostic Value of Histidine-Rich Glycoprotein RNA in Breast Tissue Using Unmodified Gold Nanoparticles Assay

  • Sanaa EissaEmail author
  • Hassan M. E. Azzazy
  • Marwa Matboli
  • Sherif M. Shawky
  • Hebatallah Said
  • Fatin A. Anous


The aim of is this study is to explore the role of tissue histidine-rich glycoprotein (HRG) RNA as a promising clinically useful biomarker for breast cancer patients prognosis using nanogold assay. Expression of the HRG RNA was assessed by gold nanoparticles and conventional RT-PCR after purification by magnetic nanoparticles in breast tissue samples. The study included 120 patients, 60 of which were histologically proven breast carcinoma cases, 30 had benign breast lesions and 30 were healthy individuals who had undergone reductive plastic surgery. ER, PR and HER2 status were also investigated. The prognostic significance of tissue HRG RNA expression in breast cancer was explored. The magnetic nanoparticles coated with specific thiol modified oligonucleotide probe were used successfully in purification of HRG RNA from breast tissue total RNAs with satisfactory yield. The developed HRG AuNPs assay had a sensitivity and a specificity of 90 %, and a detection limit of 1.5 nmol/l. The concordance rate between the HRG AuNPs assay with RT-PCR after RNA purification using magnetic nanoparticles was 93.3 %. The median follow-up period was 60 months. Among traditional prognostic biomarkers, HRG was a significant independent prognostic marker in relapse-free survival (RFS). HRG RNA is an independent prognostic marker for breast cancer and can be detected using gold NPs assay, which is rapid, sensitive, specific, inexpensive to extend the value for breast cancer prognosis.


Breast carcinoma Tissue biomarkers Gold nanoparticles Histidine-rich glycoprotein Magnetic nanoparticles 



Histidine-rich glycoprotein


Gold nanoparticles


Breast cancer


Lymph node


Estrogen receptor


Progesterone receptor

Her-2 neu

Human epidermal growth factor receptor 2


Modified magnet particles



This work was supported by the Egyptian Academy of Research and Technology, the Science and Technology Center, Project 21, and a grant from YJ-STRC to H. Azzazy. The authors acknowledge Mr. Kamel Eid from YJ-STRC for preparing the magnetic nanoparticles.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

12010_2014_1085_MOESM1_ESM.docx (141 kb)
ESM 1 (DOCX 140 kb)


  1. 1.
    Coleman, R. E., Marshall, H., & Cameron, D. (2011). Breast Cancer adjuvant therapy with zoledronic acid. New England Journal of Medicine, 365, 1396–1405.CrossRefGoogle Scholar
  2. 2.
    Howlader, N., Noone, A.M., Krapcho, M. (2010) SEER Cancer statistics review,1975−2008, National Cancer Institute. Bethesda, MD,, based on November 2010 SEER data submission, posted to the SEER web site, 2011.
  3. 3.
    Bhatt, A. N., Mathur, R., Farooque, A., Verma, A., & Dwarakanath, B. S. (2010). Cancer biomarkers – current perspectives. Indian Journal of Medical Research, 132, 129–149.Google Scholar
  4. 4.
    Danova, M., Delfanti, S., Manzoni, M., & Mariucci, S. (2011). Tissue and soluble biomarkers in breast cancer and their applications: ready to use? Journal of the National Cancer Institute Monograph, 2011, 75–78.CrossRefGoogle Scholar
  5. 5.
    Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer, 8, 592–603.CrossRefGoogle Scholar
  6. 6.
    Blank, M., & Shoenfeld, Y. (2008). Histidine-rich glycoprotein modulation of immune/autoimmune, vascular, and coagulation systems. Clinical Reviews in Allergy & Immunology, 34, 307–312.CrossRefGoogle Scholar
  7. 7.
    Rydengard, V., Olsson, A. K., Mörgelin, M., & Schmidtchen, A. (2007). Histidine-rich glycoprotein exerts antibacterial activity. FEBS Journal, 274, 377–389.CrossRefGoogle Scholar
  8. 8.
    Hill, H. D., & Mirkin, C. A. (2006). The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nature Protocols, 1, 324–338.CrossRefGoogle Scholar
  9. 9.
    Shawky, S. M., Bald, D., & Azzazy, H. M. (2010). Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clinical Biochemistry, 43, 1163–1168.CrossRefGoogle Scholar
  10. 10.
    Suzuki, K., Hosokawa, K., & Maeda, M. (2009). Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. Journal of the American Chemical Society, 131(22), 7518–7519. doi: 10.1021/ja9011386.CrossRefGoogle Scholar
  11. 11.
    Baptista, P., Doria, G., Henriques, D., Pereira, E., & Franco, R. (2009). Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. Journal of Biotechnology, 119, 111–117.CrossRefGoogle Scholar
  12. 12.
    Al Olaby, R. R., & Azzazy, H. M. (2011). Hepatitis C virus RNA assays: current and emerging technologies and their clinical applications. Expert Review of Molecular Diagnostics, 11, 53–64.CrossRefGoogle Scholar
  13. 13.
    Cao, Y. C., Jin, R., Thaxton, C. S., & Mirkin, C. A. (2005). A two-color-change, nanoparticle-based method for DNA detection. Talanta, 67, 449–455.CrossRefGoogle Scholar
  14. 14.
    Pinder, S. E., Elston, C. W., & Ellis, I. O. (1998). Invasive carcinoma: usual histological types. In C. W. Elston & I. O. Ellis (Eds.), The breast (3rd ed., pp. 283–337). Edinburgh: Churchill Livingstone.Google Scholar
  15. 15.
    Sobin, L., Gospodarowicz, M., & Wittekind, C. (Eds.). (2009). TNM classification of malignant tumors (7th ed.). Hoboken: Wiley.Google Scholar
  16. 16.
    World Health Organization. (1969–1981) International histological classification of tumours. 2nd ed. Geneva: World Health Organization; Berlin: Springer-Verlag, 1988–Present.Google Scholar
  17. 17.
    Hummon, A. B., Lim, S. R., Difilippantonio, M. J., & Ried, T. (2007). Isolation and solubilization of proteins after TRIzol® extraction of RNA and DNA from patient material following prolonged storage. Bio Techniques Journal, 42, 467–472.Google Scholar
  18. 18.
    Sambrook, J., & Fritsch, E. F. (1989). Molecular cloning: a laboratory manual (2nd ed., pp. 42–59). New York: Cold Spring Harbor Laboratory Press.Google Scholar
  19. 19.
    Eissa, S., Shawky, S. M., Matboli, M., Mohamed, S., & Azzazy, H. M. (2014). Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clinical Biochemistry, 47, 104–110.CrossRefGoogle Scholar
  20. 20.
    Kouassi, G. K., Irudayaraj, J., & McCarty, G. (2005). Activity of glucose oxidase functionalized onto magnetic nanoparticles. Biomagnetic Research and Technology, 3, 1.CrossRefGoogle Scholar
  21. 21.
    Kouassi, G. K., & Irudayaraj, J. (2006). Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Analytical Chemistry, 78, 3234–3241.CrossRefGoogle Scholar
  22. 22.
    Sabbatini, A. R. M., Battolla, M. B., Martini, P. E., Ranieri-Raggi, D. M., Moir, A. J. G., & Raggi, A. (2011). Evidence that muscle cells do not express the histidine-rich glycoprotein associated with AMP deaminase but can internalise the plasma protein. European Journal of Histochemistry, 55, e6.Google Scholar
  23. 23.
    Koide, T., Foster, D., Yoshitake, S., & Davie, E. W. (1986). Amino acid sequence of human histidine rich glycoprotein derived from the nucleotide sequence of its cDNA. Biochemistry, 25, 2220–2225.CrossRefGoogle Scholar
  24. 24.
    Smith, S. D., Wheeler, M. A., Plescia, J., Colberg, J. W., Weiss, R. M., & Altieri, D. C. (2001). Urine detection of survivin and diagnosis of breast cancer. JAMA, 285, 324–328.CrossRefGoogle Scholar
  25. 25.
    Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., & Letsinger, R. L. (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 120, 1959–1964.CrossRefGoogle Scholar
  26. 26.
    Lianga, S., Singh, M., Gam, L., (2010/2011) Potential hydrophobic protein markers of breast cancer in Malaysian Chinese, Malay and Indian patients. Cancer Biomarkers, 8: 319–330 319.Google Scholar
  27. 27.
    Noh, S., Jung, J. J., Jung, M., Kim, K. H., Lee, H. Y., Wang, B., Cho, J., Kim, T. S., Jeung, H. C., & Rha, S. Y. (2012). Body fluid MMP-2 as a putative biomarker in metastatic breast cancer. Oncology Letters, 3, 699–703.Google Scholar
  28. 28.
    Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2012). Cancer incidence and mortality worldwideIARC Cancer Base No. 10. Lyon: International Agency for Research on Cancer.Google Scholar
  29. 29.
    Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics. CA Cancer Journal of Clinicians, 62, 10–29.CrossRefGoogle Scholar
  30. 30.
    Eissa, S., Swellam, M., Ismail, M., Hamdy, M., & Mokhtar, N. (2004). Emerging role of p53, bcl-2 and telomerase activity in Egyptian breast cancer patients. IUBMB Life, 56, 483–490.CrossRefGoogle Scholar
  31. 31.
    Sharma, S. (2009). TM guidelines. Indian Jourcal of Medical and Paediatric Oncology, 30, 1–8. doi: 10.4103/0971-5851.56328.CrossRefGoogle Scholar
  32. 32.
    Jung, M., Choi, E. H., Nam, C. M., Rha, S. Y., Jeung, H. C., Lee, S. H., Yang, W. I., Roh, J. K., & Chung, H. C. (2013). Application of the adjuvant! Online model to Korean breast cancer patients: an assessment of prognostic accuracy and development of an alternative prognostic tool. Annals of Surgical Oncology, 20, 2615–2624. doi: 10.1245/s10434-013-2956-z.CrossRefGoogle Scholar
  33. 33.
    Goud, T. M., Dwarakanath, B. S., Augustus, M., & Bhargava, K. M. (1995). Flow cytometry of breast tumors. Relevance to clinicopathology and survival. Analytical and Quantitative Cytology and Histology, 17, 265–271.Google Scholar
  34. 34.
    Cecchini, R. S., Costantino, J. P., Cauley, J. A., Cronin, W. M., Wickerham, D. L., Land, S. R., Weissfeld, J. L., & Wolmark, N. (2012). Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials. Cancer Prevention Research, 5, 583–592.CrossRefGoogle Scholar
  35. 35.
    Azzazy, M. H. E., Mansour, M. H., Samir, T. M., & Franco, R. (2012). Gold nanoparticles in the clinical laboratory: principles of preparation and applications. Clinical Chemistry and Laboratory Medicine: CCLM/FESCC, 50, 193–209.CrossRefGoogle Scholar
  36. 36.
    Ringner, M., Fredlund, E., Hakkinen, J., Borg, A., & Staaf, J. (2011). GOBO: gene expression-based outcome for breast cancer online. PloS One, 6, e17911.CrossRefGoogle Scholar
  37. 37.
    Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sanaa Eissa
    • 1
    Email author
  • Hassan M. E. Azzazy
    • 2
  • Marwa Matboli
    • 1
  • Sherif M. Shawky
    • 2
  • Hebatallah Said
    • 1
  • Fatin A. Anous
    • 3
  1. 1.Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of MedicineAin Shams UniversityCairoEgypt
  2. 2.Department of Chemistry and Youssef Jameel Science and Technology Research CenterAmerican University in CairoNew CairoEgypt
  3. 3.General Surgery Department, Faculty of MedicineAin Shams UniversityCairoEgypt

Personalised recommendations