Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 1, pp 146–155 | Cite as

The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover

  • S. N. Olsen
  • K. Borch
  • N. Cruys-Bagger
  • P. Westh
Article

Abstract

Industrially, enzymatic hydrolysis of lignocellulose at high solid content is preferable over low solids due to a reduction in processing costs. Unfortunately, the economic benefits are counteracted by a linear decrease in yield with solid content, referred to as the “solid effect” in the literature. In the current study, we investigate the contribution of product inhibition to the solid effect (7–33 % solids). Product inhibition was measured directly by adding glucose to high-solid hydrolysis samples and indirectly through variation of water content and beta-glucosidase concentration. The results suggest that the solid effect is mainly controlled by product inhibition under the given experimental conditions (washed pretreated corn stover as substrate). Cellobiose was found to be approximately 15 times more inhibitory than glucose on a molar scale. However, considering that glucose concentrations are at least 100 times higher than cellobiose concentrations under industrial conditions, glucose inhibition of cellulases is suggested to be the main cause of the solid effect.

Keywords

High-solid hydrolysis Solid effect Cellulase inhibition Pretreated corn stover 

References

  1. 1.
    Gomez, L. D., Steele-King, C. G., & McQueen-Mason, S. J. (2008). New Phytologist, 178, 473–485.CrossRefGoogle Scholar
  2. 2.
    Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.CrossRefGoogle Scholar
  3. 3.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., Himmel, M. E., & Mielenz, J. R. (2006). Biotechnology Advances, 24, 452–481.CrossRefGoogle Scholar
  5. 5.
    Jorgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioproducts & Biorefining-Biofpr, 1, 119–134.CrossRefGoogle Scholar
  6. 6.
    Modenbach, A. A., & Nokes, S. E. (2013). Biomass & Bioenergy, 56, 526–544.CrossRefGoogle Scholar
  7. 7.
    Heinzelman, P., Snow, C. D., Wu, I., Nguyen, C., Villalobos, A., Govindarajan, S., Minshull, J., & Arnold, F. H. (2009). Proceedings of the National Academy of Sciences of the United States of America, 106, 5610–5615.CrossRefGoogle Scholar
  8. 8.
    Andric, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Biotechnology Advances, 28, 308–324.CrossRefGoogle Scholar
  9. 9.
    Ohgren, K., Vehmaanpera, J., Siika-Aho, M., Galbe, M., Viikari, L., & Zacchi, G. (2007). Enzyme and Microbial Technology, 40, 607–613.CrossRefGoogle Scholar
  10. 10.
    Andric, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Biotechnology Advances, 28, 407–425.CrossRefGoogle Scholar
  11. 11.
    Hodge, D. B., Karim, M., Schell, D. J., & McMillan, J. D. (2009). Applied Biochemistry and Biotechnology, 152, 88–107.CrossRefGoogle Scholar
  12. 12.
    Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.CrossRefGoogle Scholar
  13. 13.
    Humbird, D., Mohagheghi, A., Dowe, N., & Schell, D. J. (2010). Biotechnology Progress, 26, 1245–1251.CrossRefGoogle Scholar
  14. 14.
    Kristensen, J. B., Felby, C., & Jorgensen, H. (2009). Biotechnology for Biofuels, 2, 11.CrossRefGoogle Scholar
  15. 15.
    Hodge, D. B., Karim, M., Schell, D. J., & McMillan, J. D. (2008). Bioresource Technology, 99, 8940–8948.CrossRefGoogle Scholar
  16. 16.
    Puri, D. J., Heaven, S., & Banks, C. J. (2013). Biotechnology for Biofuels, 6, 107.CrossRefGoogle Scholar
  17. 17.
    Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287.CrossRefGoogle Scholar
  18. 18.
    Du, F., Wolger, E., Wallace, L., Liu, A., Kaper, T., & Kelemen, B. (2010). Applied Biochemistry and Biotechnology, 161, 313–317.CrossRefGoogle Scholar
  19. 19.
    Xiao, Z. Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113, 1115–1126.CrossRefGoogle Scholar
  20. 20.
    Roberts, K. M., Lavenson, D. M., Tozzi, E. J., McCarthy, M. J., & Jeoh, T. (2011). Cellulose, 18, 759–773.CrossRefGoogle Scholar
  21. 21.
    Olsen, S., Bohlin, C., Murphy, L., Borch, K., McFarland, K., Sweeny, M., & Westh, P. (2011). Enzyme and Microbial Technology, 49, 353–359.CrossRefGoogle Scholar
  22. 22.
    Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2010). Enzyme and Microbial Technology, 46, 170–176.CrossRefGoogle Scholar
  23. 23.
    Baumann, M. J., Borch, K., & Westh, P. (2011). Biotechnology for Biofuels, 4, 45.CrossRefGoogle Scholar
  24. 24.
    Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Enzyme and Microbial Technology, 48, 408–415.CrossRefGoogle Scholar
  25. 25.
    Qing, Q., Yang, B., & Wyman, C. E. (2010). Bioresource Technology, 101, 9624–9630.CrossRefGoogle Scholar
  26. 26.
    Kristensen, J. B., Felby, C., & Jorgensen, H. (2009). Applied Biochemistry and Biotechnology, 156, 557–562.CrossRefGoogle Scholar
  27. 27.
    Selig, M. J., Hsieh, C. W. C., Thygesen, L. G., Himmel, M. E., Felby, C., & Decker, S. R. (2012). Biotechnology Progress, 28, 1478–1490.CrossRefGoogle Scholar
  28. 28.
    Murphy, L., Borch, K., McFarland, K., Bohlin, C., & Westh, P. (2010). Enzyme and Microbial Technology, 46, 141–146.CrossRefGoogle Scholar
  29. 29.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.Google Scholar
  30. 30.
    Olsen, S. N., Lumby, E., McFarland, K., Borch, K., & Westh, P. (2011). Applied Biochemistry and Biotechnology, 163, 626–635.CrossRefGoogle Scholar
  31. 31.
    Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Biotechnology and Bioengineering, 97, 287–296.CrossRefGoogle Scholar
  32. 32.
    O'Dwyer, J. P., Zhu, L., Granda, C. B., & Holtzapple, M. T. (2007). Bioresource Technology, 98, 2969–2977.CrossRefGoogle Scholar
  33. 33.
    Bohlin, C., Olsen, S. N., Morant, M. D., Patkar, S., Borch, K., & Westh, P. (2010). Biotechnology and Bioengineering, 107, 943–952.CrossRefGoogle Scholar
  34. 34.
    Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Bioresource Technology, 127, 500–507.CrossRefGoogle Scholar
  35. 35.
    Hsieh, C. W., Cannella, D., Jorgensen, H., Felby, C., & Thygesen, L. G. (2014). Journal of Agricultural and Food Chemistry, 62, 3800–3805.CrossRefGoogle Scholar
  36. 36.
    Olsen, S., Ramlov, H., & Westh, P. (2007). Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 148, 339–345.CrossRefGoogle Scholar
  37. 37.
    Kumar, R., & Wyman, C. (2009). Biotechnology and Bioengineering, 102, 457–467.CrossRefGoogle Scholar
  38. 38.
    Murphy, L., Bohlin, C., Baumann, M. J., Olsen, S. N., Sorensen, T. H., Anderson, L., Borch, K., & Westh, P. (2013). Enzyme and Microbial Technology, 52, 163–169.CrossRefGoogle Scholar
  39. 39.
    Gruno, M., Valjamae, P., Pettersson, G., & Johansson, G. (2004). Biotechnology and Bioengineering, 86, 503–511.CrossRefGoogle Scholar
  40. 40.
    Teugjas, H., & Vaeljamaee, P. (2013). Biotechnology for Biofuels, 6, 104.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. N. Olsen
    • 2
  • K. Borch
    • 2
  • N. Cruys-Bagger
    • 1
  • P. Westh
    • 1
  1. 1.Roskilde UniversityRoskildeDenmark
  2. 2.Novozymes A/SBagsværdDenmark

Personalised recommendations