Applied Biochemistry and Biotechnology

, Volume 174, Issue 1, pp 297–308 | Cite as

Siderophore as a Potential Plant Growth-Promoting Agent Produced by Pseudomonas aeruginosa JAS-25

  • M. B. Sulochana
  • S. Y. Jayachandra
  • S. Anil Kumar
  • A. B. Parameshwar
  • K. Mohan Reddy
  • A. Dayanand


Siderophores scavenges Fe+3 from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.


Siderophore Agricultural plants Growth promotion Pseudomonas sp Indole Acetic acid 



Financial support (UGC no. F. no. 37-162/2009(SR)) by UGC, Government of India, Ministry of Science and Technology, New Delhi is highly acknowledged for granting UGC Major Research Project. Our sincere thanks to Dr. Yogesh S. Shouche, Scientist, National Center for Cell Sciences, Pune, Maharashtra, India for his kind help in the identification of the strain.


  1. 1.
    Nehl, D. B., Allen, S. J., & Brown, J. F. (1996). Applied Soil Ecology, 5, 1–20.CrossRefGoogle Scholar
  2. 2.
    Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Current Opinion in Plant Biology, 4, 343–350.CrossRefGoogle Scholar
  3. 3.
    Guerinot, M. L. (1994). Annual Review of Microbiology, 48, 743–772. doi: 10.1146/annurev.mi.48.100194.003523.CrossRefGoogle Scholar
  4. 4.
    Chincholkar, S. B., Chaudhari, B. L., & Rane, M. R. (2007). In A. Varma & S. B. Chincholkar (Eds.), Microbial siderophores, soil biology (pp. 205–217). Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Patel, A. K., Ahire, J. A., Pawar, S. P., Chaudhari, B. L., et al. (2010). Applied Biochemistry and Biotechnology, 160, 140–155.CrossRefGoogle Scholar
  6. 6.
    Neilands, J. B. (1995). Journal of Biological Chemistry, 270, 26723–26726. doi: 10.1074/jbc.270.45.26723.CrossRefGoogle Scholar
  7. 7.
    Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., & Kloepper, J. W. (1996). Plant Disease, 80, 891–894.CrossRefGoogle Scholar
  8. 8.
    Manwar, A. V., Khandelwal, S. R., Chaudhari, B. L., Meyer, J. M., et al. (2004). Applied Biochemistry and Biotechnology, 118, 243–251.CrossRefGoogle Scholar
  9. 9.
    Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., & Chincholkar, S. B. (2005). Indian Journal of Biotechnology, 4, 484–490.Google Scholar
  10. 10.
    Sayyed, R. Z., & Chincholkar, S. B. (2009). Current Microbiology, 58(1), 47–51.CrossRefGoogle Scholar
  11. 11.
    Lugtenberg, B. J., Thomas, F. C., Woeng, A. C., & Blomberg, G. V. (2002). Antonie van Leeuwenhock, 81, 373–383.CrossRefGoogle Scholar
  12. 12.
    Thrane, C., Harder, N. I., Neiendam, N. M., Sorensen, A., & Olson, J. S. (2000). FEMS Microbiology Ecology, 33, 39–46.CrossRefGoogle Scholar
  13. 13.
    Johri, B. N., Sharma, A., & Virdi, J. S. (2003). Advances in biochemical engineering biotechnology (pp. 49–89). Berlin: Springer Verlag.Google Scholar
  14. 14.
    Bakker, P. A. H. M., Raaijmakers, M., & Schippers, B. (1993). San Diego, USA: Academic Press, pp. 269–281.Google Scholar
  15. 15.
    Buysens, S., Heungens, K., Poppe, J., & Hofte, M. (1996). Applied Environmental Microbiology, 62, 865–871.Google Scholar
  16. 16.
    Lemanceau, P., & Albouvette, C. (1993). Biocontrol Science and Technology, 3, 219–234.CrossRefGoogle Scholar
  17. 17.
    Champomier-Veges, M., Stintzi, A., & Meyer, J. M. (1996). Microbiology, 142, 1191–1199.CrossRefGoogle Scholar
  18. 18.
    Sayyed, R. Z., Gangurde, N. S., Patel, P. R., Joshi, S. A., & Chincholkar, S. B. (2010). Indian Journal of Biotechnology, 9, 302–307.Google Scholar
  19. 19.
    Ausubel, F. M., Brent, R., Kingston, R. E., & Moore, D. D. et al. (1987). Current protocols in molecular biology. Green Publishing Associates and Wiley-Intersciences New York Loose-leaf Binder.Google Scholar
  20. 20.
    Jayachandra, S. Y., Anil Kumar, S., Shouche, Y. S., & Sulochana, M. B. (2013). International Journal of Biology, Pharmacy and Allied Sciences, 2(2).Google Scholar
  21. 21.
    Tripathi, M., Munot, H. P., Shouche, Y., Meyer, J. M., & Goel, R. (2005). Current Microbiology, 50(5), 233–237.CrossRefGoogle Scholar
  22. 22.
    Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package) version 3.5C, distributed by the author. Seattle: Department of Genetics, University of Washington.Google Scholar
  23. 23.
    Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2004). Molecular Biology and Evolution, 24, 1596–1599.Google Scholar
  24. 24.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. J. (1997). Nucleic Acids Research, 24, 4876–4882.CrossRefGoogle Scholar
  25. 25.
    Jukes, T. H., & Cantor, C. R. (1969). Vol. 3. Academic Press, New York, pp. 21–32.Google Scholar
  26. 26.
    Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.Google Scholar
  27. 27.
    Felsenstein, J. (1985). International Journal Organism Evolution, 39, 783–791.CrossRefGoogle Scholar
  28. 28.
    Meyer, J. M., & Abdallah, M. A. (1978). Journal of General Microbiology, 107, 319–328.CrossRefGoogle Scholar
  29. 29.
    Pal, R. B., & Gokarn, K. (2010). Journal of Bioscience and Technology, 1(3), 127–134.Google Scholar
  30. 30.
    Csaky, T. (1948). Acta Chemica Scandinavica, 2, 450–454.CrossRefGoogle Scholar
  31. 31.
    Sulochana, M. B., Jayachandra, S. Y., Anil Kumar, S. K., & Dayanand, A. (2014). Journal of Basic Microbiology, 54, 418–424.CrossRefGoogle Scholar
  32. 32.
    Bric, J. M., Bostock, R. M., & Silversone, S. E. (1991). Applied and Environmental Microbiology, 57, 535–538.Google Scholar
  33. 33.
    Arnow, L. E. (1937). Journal of Biological Chemistry, 118, 531–537.Google Scholar
  34. 34.
    DiasdeVillegas, M. E., Villa, P., & Frias, A. (2002). Revista Latinoamericana de Microbiología, 44, 112–117.Google Scholar
  35. 35.
    Digat, B., & Mattar, J. (1990). Symbiosis (Rehovot), 9(1–3), 207–213.Google Scholar
  36. 36.
    Landa, B. B., Navas-Cortes, J. A., & Jimenez-Diaz, R. M. (2004). Plant Pathology, 53, 341–352.CrossRefGoogle Scholar
  37. 37.
    Djibaoui, R., & Bensoltane, A. (2005). African Journal of Biotechnology, 4, 697–702.CrossRefGoogle Scholar
  38. 38.
    Sayyed, R. Z., Naphade, B. S., & Chincholkar, S. B. (2005). Recent trends in biotechnology (pp. 1–16). Jodhpur: Scientific Publisher.Google Scholar
  39. 39.
    Bano, N., & Musarrat, J. (2003). Current Microbiology, 46, 324–328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. B. Sulochana
    • 1
  • S. Y. Jayachandra
    • 1
  • S. Anil Kumar
    • 1
  • A. B. Parameshwar
    • 1
  • K. Mohan Reddy
    • 1
  • A. Dayanand
    • 2
  1. 1.Department of PG Studies and Research in BiotechnologyGulbarga UniversityGulbargaIndia
  2. 2.Department of PG Studies and Research in MicrobiologyGulbarga UniversityGulbargaIndia

Personalised recommendations